如图,直角坐标系内的矩形ABCD中顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以
如图,直角坐标系内的矩形ABCD中顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P,与对角线AC相切于点F,过P、F作直...
如图,直角坐标系内的矩形ABCD中顶点A的坐标为(0,3),BC=2AB,P为AD边上一动点(与点A、D不重合),以点P为圆心作⊙P,与对角线AC相切于点F,过P、F作直线 l ,交BC边上于点E .当点P运动到点P 1 位置时,直线 l 恰好经过点B,此时直线的解析式是y=2x+1 . (1)求BC、AP 1 的长; (2)设AP=m,梯形PECD的面积为S,求S关于m的函数关系式,并写出自变量m的取值范围;(3)以点E为圆心作⊙E,与x轴相切 .试探究并猜想⊙P和⊙E有哪几种不同的位置关系,并求出AP相应的取值范围.
展开
1个回答
展开全部
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询