已知以x为自变量的二次函数y=x2+2mx+m-7.(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点
已知以x为自变量的二次函数y=x2+2mx+m-7.(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;(2)若二次函数的图象与x轴的两个交点在点(1,0)的...
已知以x为自变量的二次函数y=x2+2mx+m-7.(1)求证:不论m为任何实数,二次函数的图象与x轴都有两个交点;(2)若二次函数的图象与x轴的两个交点在点(1,0)的两侧,关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,且m为整数,求m的值;(3)在(2)的条件下,关于x的另一方程x2+2(a+m)x+2a-m2+6 m-4=0有大于0且小于5的实数根,求a的整数值.
展开
展开全部
(1)证明:令x2+2mx+m-7=0.
得△=(2m)2-4(m-7)=4(m?
)2+27.
∵不论m为任何实数,都有4(m?
)2+27>0,即△>0.
∴方程有两个不相等的实数根.
∴不论m为任何实数,二次函数的图象与x轴都有两个交点;(2分)
(2)解:∵二次函数图象的开口向上,且与x轴的两个交点在点(1,0)的两侧,
∴当x=1时,y=12+2m+m-7<0.
解得m<2.①(3分)
∵关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,
∴△=(2m+3)2-4m2≥0,且m2≠0.
解得m≥?
,且m≠0.②(4分)
∵m为整数,由①,②可得m的值是1;(5分)
(3)解:当m=1时,方程x2+2(a+m)x+2a-m2+6m-4=0为x2+2(a+1)x+2a+1=0.
由求根公式,得x=
.
∴x=-2a-1或x=-1.(6分)
∵方程有大于0且小于5的实数根,
∴0<-2a-1<5.
∴-3<a<?
.
∴a的整数值为-2,-1.(7分)
得△=(2m)2-4(m-7)=4(m?
1 |
2 |
∵不论m为任何实数,都有4(m?
1 |
2 |
∴方程有两个不相等的实数根.
∴不论m为任何实数,二次函数的图象与x轴都有两个交点;(2分)
(2)解:∵二次函数图象的开口向上,且与x轴的两个交点在点(1,0)的两侧,
∴当x=1时,y=12+2m+m-7<0.
解得m<2.①(3分)
∵关于x的一元二次方程m2x2+(2m+3)x+1=0有两个实数根,
∴△=(2m+3)2-4m2≥0,且m2≠0.
解得m≥?
3 |
4 |
∵m为整数,由①,②可得m的值是1;(5分)
(3)解:当m=1时,方程x2+2(a+m)x+2a-m2+6m-4=0为x2+2(a+1)x+2a+1=0.
由求根公式,得x=
?2(a+1)±2a |
2 |
∴x=-2a-1或x=-1.(6分)
∵方程有大于0且小于5的实数根,
∴0<-2a-1<5.
∴-3<a<?
1 |
2 |
∴a的整数值为-2,-1.(7分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询