设函数f(x)=ex-ln(x+1).(Ⅰ)求函数f(x)的最小值;(Ⅱ)已知0≤x1<x2.求证:ex2?x1>lne(x2+1
设函数f(x)=ex-ln(x+1).(Ⅰ)求函数f(x)的最小值;(Ⅱ)已知0≤x1<x2.求证:ex2?x1>lne(x2+1)x1+1;(Ⅲ)设g(x)=ex-xx...
设函数f(x)=ex-ln(x+1).(Ⅰ)求函数f(x)的最小值;(Ⅱ)已知0≤x1<x2.求证:ex2?x1>lne(x2+1)x1+1;(Ⅲ)设g(x)=ex-xx+1lnx-f(x),证明:对任意的正实数a,总能找到实数m(a),使g[m(a)]<a成立.注:e为自然对数的底数.
展开
1个回答
展开全部
(Ⅰ)f′(x)=ex?
;
∴-1<x<0时,
<ex<1,
>1,∴f′(x)<0;
x>0时,ex>1,0<
<1,∴f′(x)>0,∴x=0时,f(x)取到最小值1.
(Ⅱ)由题意知:x2-x1>0;
∴f(x2-x1)>f(0),即e(x2?x1)?ln(x2?x1+1)>1,即e(x2?x1)>lne(x2?x1+1);
∴要使:e(x2?x1)>ln
,我们来证lne(x2?x1+1)>ln
;即证x2?x1+1>
;
∵x2?x1+1?
=
>0;
∴ex2?x1>ln
.
(Ⅲ)∵g(x)=
+ln(1+
);
令x=2n,则g(2n)=
+ln(1+
),(n∈N*);
要使:g(2n)<a,只要
<
,且ln(1+
)<
;
由ln(1+
)<
,解得n>?log2(e
?1);
又当n>1时,
=
<
=
;
故只需
<
,即n>
+1;
设n0=max2,?log2(e
?1),
+1;
只需取m(a)=2n0+1时,g(m(a))<a.
1 |
x+1 |
∴-1<x<0时,
1 |
e |
1 |
x+1 |
x>0时,ex>1,0<
1 |
x+1 |
(Ⅱ)由题意知:x2-x1>0;
∴f(x2-x1)>f(0),即e(x2?x1)?ln(x2?x1+1)>1,即e(x2?x1)>lne(x2?x1+1);
∴要使:e(x2?x1)>ln
e(x2+1) |
x1+1 |
e(x2+1) |
x1+1 |
x2+1 |
x1+1 |
∵x2?x1+1?
x2+1 |
x1+1 |
x1(x2?x1) |
x1+1 |
∴ex2?x1>ln
e(x2+1) |
x1+1 |
(Ⅲ)∵g(x)=
lnx |
x+1 |
1 |
x |
令x=2n,则g(2n)=
ln2n |
2n+1 |
1 |
2n |
要使:g(2n)<a,只要
ln2n |
2n |
a |
2 |
1 |
2n |
a |
2 |
由ln(1+
1 |
2n |
a |
2 |
a |
2 |
又当n>1时,
ln2n |
2n+1 |
nln2 |
(1+1)n+1 |
2nln2 |
n(n?1) |
2ln2 |
n?1 |
故只需
2ln2 |
n?1 |
a |
2 |
4ln2 |
a |
设n0=max2,?log2(e
a |
2 |
4ln2 |
a |
只需取m(a)=2n0+1时,g(m(a))<a.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |