函数y=f(x)是定义在R上的奇函数,且f(2)=0,对于任意x∈R,都有f(x+4)=f(x)+f(4)恒成立,则f(

函数y=f(x)是定义在R上的奇函数,且f(2)=0,对于任意x∈R,都有f(x+4)=f(x)+f(4)恒成立,则f(2012)的值为______.... 函数y=f(x)是定义在R上的奇函数,且f(2)=0,对于任意x∈R,都有f(x+4)=f(x)+f(4)恒成立,则f(2012)的值为______. 展开
 我来答
苹果We9
推荐于2016-02-26 · TA获得超过100个赞
知道答主
回答量:204
采纳率:75%
帮助的人:71.3万
展开全部
因为函数y=f(x)是定义在R上的奇函数,且f(2)=0,
所以当x=-2时,f(-2+4)=f(-2)+f(4)=f(2),
所以f(4)=f(2)-f(-2)=2f(2)=0,
所以f(x+4)=f(x),即函数的周期为4.
所以f(2012)=f(503×4)=f(0)=0.
故答案为:0.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式