已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,(1)求f(0).(2)
已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,(1)求f(0).(2)判断函数的奇偶性,并证明之.(3)解不等式f(a2...
已知定义域在R上的函数f(x)满足f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,(1)求f(0).(2)判断函数的奇偶性,并证明之.(3)解不等式f(a2-4)+f(2a+1)<0.
展开
展开全部
(1)取x=y=0则f(0)=2f(0)∴f(0)=0
(2)f(x)是奇函数.其证明如下:
对任意x∈R,取y=-x则f[x+(-x)]=f(x)+f(-x)=f(0)=0即f(-x)=-f(x)
∴f(x)是R上的奇函数
(3)任意取x1,x2∈R,x1<x2,则x2=x1+△x(其中△x>0)
∴f(x2)=f(x1+△x)=f(x1)+f(△x)
∴f(x2)-f(x1)=f(△x)>0即f(x2)>f(x1)
∴f(x)是R上的增函数
又∵f(a2-4)+f(2a+1)<0
∴f(2a+1)<-f(a2-4)=f(4-a2)
∴2a+1<4-a2即a2+2a-3<0
∴-3<a<1
(2)f(x)是奇函数.其证明如下:
对任意x∈R,取y=-x则f[x+(-x)]=f(x)+f(-x)=f(0)=0即f(-x)=-f(x)
∴f(x)是R上的奇函数
(3)任意取x1,x2∈R,x1<x2,则x2=x1+△x(其中△x>0)
∴f(x2)=f(x1+△x)=f(x1)+f(△x)
∴f(x2)-f(x1)=f(△x)>0即f(x2)>f(x1)
∴f(x)是R上的增函数
又∵f(a2-4)+f(2a+1)<0
∴f(2a+1)<-f(a2-4)=f(4-a2)
∴2a+1<4-a2即a2+2a-3<0
∴-3<a<1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询