函数f(x)是定义在R上的偶函数,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=2x,若在区间[-2,3]

函数f(x)是定义在R上的偶函数,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=2x,若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的... 函数f(x)是定义在R上的偶函数,且满足f(1+x)=f(1-x),当x∈[0,1]时,f(x)=2x,若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,则实数a的取值范围是25<a<2325<a<23. 展开
 我来答
三秒微笑5610
2015-01-23 · TA获得超过152个赞
知道答主
回答量:111
采纳率:0%
帮助的人:53.1万
展开全部
若在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,等价为f(x)=a(x+2)有四个不相等的实数根,
即函数f(x)和g(x)=a(x+2),有四个不相同的交点,
∵f(x+2)=f(x),∴函数的周期是2,
当-1≤x≤0时,0≤-x≤1,此时f(-x)=-2x,
∵f(x)是定义在R上的偶函数,
∴f(-x)=-2x=f(x),
即f(x)=-2x,-1≤x≤0,
作出函数f(x)和g(x)的图象,
当g(x)经过A(1,2)时,两个图象有3个交点,此时g(1)=3a=2,解得a=
2
3

当g(x)经过B(3,2)时,两个图象有5个交点,此时g(3)=5a=2,解得a=
2
5

要使在区间[-2,3]上方程ax+2a-f(x)=0恰有四个不相等的实数根,
2
5
<a<
2
3

故答案为:
2
5
<a<
2
3
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式