2个回答
展开全部
事实上这题有不作代换的方法,用柯西不等式变形——权方和不等式。
权方和不等式:
a1^2/b1+a2^2/b2+...+an^2/bn>=(a1+a2+...+an)^2/(b1+b2+...+bn)
这个很容易证明,把右边的(b1+b2+...+bn)乘到左边来用柯西不等式就可以证明。
所以你的不等式左边乘个(abc)^2,因为abc=1所以还是不变的。
那么原式左边=(bc)^2/[a(b+c)]+(ac)^2/[b(a+c)]+(ab)^2/[c(a+b)]
由权方和不等式:(bc)^2/[a(b+c)]+(ac)^2/[b(a+c)]+(ab)^2/[c(a+b)]>=(ab+bc+ca)^2/(2ab+2bc+2ca)=(ab+bc+ca)/2
于是
1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=(ac+bc+ab)/2成立。原不等式得证。。
权方和不等式:
a1^2/b1+a2^2/b2+...+an^2/bn>=(a1+a2+...+an)^2/(b1+b2+...+bn)
这个很容易证明,把右边的(b1+b2+...+bn)乘到左边来用柯西不等式就可以证明。
所以你的不等式左边乘个(abc)^2,因为abc=1所以还是不变的。
那么原式左边=(bc)^2/[a(b+c)]+(ac)^2/[b(a+c)]+(ab)^2/[c(a+b)]
由权方和不等式:(bc)^2/[a(b+c)]+(ac)^2/[b(a+c)]+(ab)^2/[c(a+b)]>=(ab+bc+ca)^2/(2ab+2bc+2ca)=(ab+bc+ca)/2
于是
1/a^3(b+c)+1/b^3(a+c)+1/c^3(a+b)>=(ac+bc+ab)/2成立。原不等式得证。。
展开全部
http://zhidao.baidu.com/question/83780492.html
加分不必了,采纳我的,只要30分!
加分不必了,采纳我的,只要30分!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询