如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P
如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1...
如图,点P在正方体ABCD-A1B1C1D1的面对角线BC1上运动,则下列四个结论:①三棱锥A-D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1.其中正确的结论的个数是( )A.1个B.2个C.3个D.4个
展开
1个回答
展开全部
对于①,由题意知AD1∥BC1,从而BC1∥平面AD1C,
故BC1上任意一点到平面AD1C的距离均相等,
所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;
对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,
若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,
可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.
故选:C.
故BC1上任意一点到平面AD1C的距离均相等,
所以以P为顶点,平面AD1C为底面,则三棱锥A-D1PC的体积不变,故①正确;
对于②,连接A1B,A1C1,A1C1∥AD1且相等,由于①知:AD1∥BC1,
所以BA1C1∥面ACD1,从而由线面平行的定义可得,故②正确;
对于③,由于DC⊥平面BCB1C1,所以DC⊥BC1,
若DP⊥BC1,则BC1⊥平面DCP,
BC1⊥PC,则P为中点,与P为动点矛盾,故③错误;
对于④,连接DB1,由DB1⊥AC且DB1⊥AD1,
可得DB1⊥面ACD1,从而由面面垂直的判定知,故④正确.
故选:C.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询