1个回答
2015-03-21
展开全部
一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。
一阶齐次线性微分方程的通解
对于一阶齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定
一阶非齐次线性微分方程的通解
对于一阶非齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定
dx/dy+1/(ylny)*x=1/y
x=e^(∫-1/(ylny)dy){∫1/y*e^[∫1/(ylny)*dy]dy+C}
=1/lny[∫(-1/y*lny)dy+C]
=1/lny[-1/2*ln^2(y)+C]
一阶齐次线性微分方程的通解
对于一阶齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定
一阶非齐次线性微分方程的通解
对于一阶非齐次线性微分方程:
其通解形式为:
其中C为常数,由函数的初始条件决定
dx/dy+1/(ylny)*x=1/y
x=e^(∫-1/(ylny)dy){∫1/y*e^[∫1/(ylny)*dy]dy+C}
=1/lny[∫(-1/y*lny)dy+C]
=1/lny[-1/2*ln^2(y)+C]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询