计算三重积分∫∫∫Ωz√(x^2+y^2)dxdydz,其中Ω为由柱面x^+y^2=2x及平面z=0
计算三重积分∫∫∫Ωz√(x^2+y^2)dxdydz,其中Ω为由柱面x^+y^2=2x及平面z=0,z=a(a>0),y=0所围成的半圆柱体...
计算三重积分∫∫∫Ωz√(x^2+y^2)dxdydz,其中Ω为由柱面x^+y^2=2x及平面z=0,z=a(a>0),y=0所围成的半圆柱体
展开
5个回答
展开全部
半圆柱体也分上下部分的,这里假设是y≥0那部分了
三重积分主要应用直角坐标、柱面坐标和球面坐标三种坐标计算. 通常要判别被积函数 f(x,y,z) 和积分区域 Ω 所具有的特点,如果被积函数 f(x,y,z) = g(x2 + y2 + z2), 积分区域的投影是圆域,则利用球面坐标计算。
如果被积函数 f(x,y,z) = g(z),则可采用先二后一法计算,如果被积函数 f(x,y,z) = g (x2 + y2) , 积分区域 Dxy 为柱或 Ω 的投影是圆域,则利用柱面坐标计算,若以上三种特征都不具备,则采用直角坐标计算。
扩展资料:
计算三重积分注意事项:
1、坐标面投影法要注意围成闭区间的上下两个区面在一个轴平面的投影应该相同。
2、坐标轴投影要注意Dz (平行于XY面的横截面)容易用一个变量Z表示。
3、使用柱面参数要特别注意Z的上下限的确定,其上下限主要取决此区域是曲面的那一段(哪一部分曲面)。
4、球面坐标法要注意1)θ是与Z轴的夹角。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询