幂零矩阵的性质

 我来答
剑文斌v9
2016-05-30 · 超过62用户采纳过TA的回答
知道答主
回答量:181
采纳率:50%
帮助的人:59.8万
展开全部

设M为n×n的幂零矩阵。
满足M ^q= 0的最小整数q小于或等于n。 在代数封闭域上,矩阵M是幂零的,当且仅当它的所有特征值为零。因此,M的行列式和迹数都为零,所以幂零矩阵不是可逆的。 假设A和B是两个矩阵。如果A是可逆矩阵,则A B是幂零矩阵,当且仅当det(A + tB)与t无关。这是因为: 其中是A B的特征值。 M的特征多项式为λ。 每一个严格的上三角矩阵或下三角矩阵都是幂零矩阵。 每一个奇异矩阵都可以写成若干个幂零矩阵的乘积。
若M为实对称矩阵,则M=0。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式