求用积分求弧长过程

 我来答
帐号已注销
推荐于2019-08-24 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:170万
展开全部

用积分求弧长过程如下图:

曲线积分分为:

(1)对弧长的曲线积分 (第一类曲线积分)

(2)对坐标轴的曲线积分(第二类曲线积分)

两种曲线积分的区别主要在于积分元素的差别;对弧长的曲线积分的积分元素是弧长元素ds;例如:对L的曲线积分∫f(x,y)*ds 。对坐标轴的曲线积分的积分元素是坐标元素dx或dy。

例如:对L’的曲线积分∫P(x,y)dx+Q(x,y)dy。但是对弧长的曲线积分由于有物理意义,通常说来都是正的,而对坐标轴的曲线积分可以根据路径的不同而取得不同的符号。

扩展资料:

对弧长的曲线积分和对坐标轴的曲线积分是可以互相转化的,利用弧微分公式 ,或者  ;这样对弧长的曲线积分都可以转换成对坐标轴的曲线积分了。

在曲线积分中,被积的函数可以是标量函数或向量函数。积分的值是路径各点上的函数值乘上相应的权重(一般是弧长,在积分函数是向量函数时,一般是函数值与曲线微元向量的标量积)后的黎曼和。

带有权重是曲线积分与一般区间上的积分的主要不同点。物理学中的许多简单的公式(比如说)在推广之后都是以曲线积分的形式出现(  )。曲线积分在物理学中是很重要的工具,例如计算电场或重力场中的做功,或量子力学中计算粒子出现的概率。

参考资料:百度百科——曲线积分

learneroner
高粉答主

推荐于2018-03-08 · 关注我不会让你失望
知道大有可为答主
回答量:1.1万
采纳率:91%
帮助的人:6462万
展开全部

参考过程。

本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式