设3阶矩阵A的特征值为-1,1,-2求|(2A)∧*+3A-2E| 10
2个回答
展开全部
答案为1404。
解题过程如下图:
设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是矩阵A的一个特征值(characteristic value)或本征值(eigenvalue)。
扩展资料
性质
性质1:n阶方阵A=(aij)的所有特征根为λ1,λ2,…,λn(包括重根),则:
性质2:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。
性质3:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。
性质4:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询