设f(u)连续,f(0)=0,f'(0)=1

设f(x)连续且f(0)=0,f'(0)=1计算lim(x->0)=∫(t*f(x^2-t^2)dt)\x^4积分的上下界x和0... 设f(x)连续且f(0)=0,f'(0)=1 计算lim(x->0)=∫(t*f(x^2-t^2)dt)\x^4 积分的上下界x和0 展开
 我来答
冷喜巨涵衍
2019-10-15 · TA获得超过1152个赞
知道小有建树答主
回答量:1743
采纳率:92%
帮助的人:9.7万
展开全部
∫(t*f(x^2-t^2)dt)= -0.5∫f(x^2-t^2)d(x^2-t^2)
设f(x)的一个原函数为 F(x),则上述积分等于 [F(x^2) - F(0)]/2
dF(x^2)/dx = 2xf(x^2)
而在 x=0处,dF(x^2)/dx = lim[F(x^2)-F(0)]/x,F(x^2)-F(0) = xdF(x^2)/dx
所以
原极限=lim[F(x^2) - F(0)]/2x^4 = lim dF(x^2)/dx /2x^3 = 2xf(x^2)/2x^3 = f(x^2)/x^2
而根据tailor一阶 展开 f(x^2)= f(0) + f'(0)x^2 = x^2
所以原极限 = x^2/x^2 =1
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式