已知3sinβ=sin(2α+β),求证:tan(α+β)=2tanα.
展开全部
思路分析:观察条件等式和结论等式中的角,条件中含有β、2α+β,结论中含有α+β、α,若从条件入手,可采用角的变换,β=(α+β)-α,2α+β=(α+β)+α,展开后转化成齐次整式,约分得出结论.
证明:∵3sinβ=3sin[(α+β)-α]
=3sin(α+β)cosα-3cos(α+β)sinα,
sin(2α+β)=sin[(α+β)+α]
=sin(α+β)cosα+cos(α+β)sinα,
又3sinβ=sin(2α+β),
∴3sin(α+β)cosα-3cos(α+β)sinα
=sin(α+β)cosα+cos(α+β)sinα.
∴2sin(α+β)cosα=4cos(α+β)sinα.
∴tan(α+β)=2tanα.
方法归纳
对条件恒等式的证明,若条件复杂,可从化简条件入手得出结论;若结论复杂,可化简结论,用上述条件;若条件和结论都较为复杂,可同时化简它们,直到找到它们间的联系.
深化升华
三角恒等式的证明实质就是由一种结构形式转化为另一种结构形式.因此证明恒等式的基本思路是:证明等式时必须仔细观察等式两边结构上的差异,然后分析这些差异和联系,最后从解决差异入手,施行适当的变换,直至消除这些差异完成恒等式的证明.
证明:∵3sinβ=3sin[(α+β)-α]
=3sin(α+β)cosα-3cos(α+β)sinα,
sin(2α+β)=sin[(α+β)+α]
=sin(α+β)cosα+cos(α+β)sinα,
又3sinβ=sin(2α+β),
∴3sin(α+β)cosα-3cos(α+β)sinα
=sin(α+β)cosα+cos(α+β)sinα.
∴2sin(α+β)cosα=4cos(α+β)sinα.
∴tan(α+β)=2tanα.
方法归纳
对条件恒等式的证明,若条件复杂,可从化简条件入手得出结论;若结论复杂,可化简结论,用上述条件;若条件和结论都较为复杂,可同时化简它们,直到找到它们间的联系.
深化升华
三角恒等式的证明实质就是由一种结构形式转化为另一种结构形式.因此证明恒等式的基本思路是:证明等式时必须仔细观察等式两边结构上的差异,然后分析这些差异和联系,最后从解决差异入手,施行适当的变换,直至消除这些差异完成恒等式的证明.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询