你觉得大学课程中的《复变函数与积分变换》和《实变函数与泛函分析》哪个难?

 我来答
北齐野菜樑孜然
活跃答主

2022-02-19 · 来这里与你纸上谈兵
知道小有建树答主
回答量:371
采纳率:100%
帮助的人:6.8万
展开全部

如果你问大学课程中的《复变函数与积分变换》和《实变函数与泛函分析》哪个难,我觉得都难?

首先来聊聊《复变函数与积分变换》:复变函数论主要用于研究复域中的解析函数,因此通常称为解析函数论。积分变换最基本的一点是,它们可以用来解数学方程。其实这可以作为两门学科,但是也可以作为一门学科。因为复数的概念起源于求方程的根。在求二次和三次代数方程的根时,有负数的平方。长期以来,人们无法理解这样的数字。但随着数学的发展,这种数的重要性越来越明显。

积分变换是数学理论或应用中非常有用的工具。最重要的积分变换是傅里叶变换和拉普拉斯变换。由于不同应用的需要,还有其他的积分变换,其中梅林变换和汉克尔变换被广泛应用,可以通过傅里叶变换或拉普拉斯变换进行变换。所以他们之间还是有联系的。

再者说说《实变函数与泛函分析》:说到这门学科,肯定离不开集合论部分,已知给出了更多的拓扑定义,然后讨论了一些关于顺序和选择公理的事情,这门学科在附录中列出了顺序和选择公理,以便进行简单解释,但这一部分对学习实变量函数几乎没有影响。在测量理论方面,需要从外部测量和内部测量两方面给出了测量方法,按照勒伯格最初建立测量理论的顺序,操作更为复杂。

所以,实变函数与泛函分析的关系比较复杂,就是先实变函数,然后再泛函分析。其中包含了范数空间,度量空间:它涉及紧性,可以用来证明代数的基本定理。这些简单的概念已经可以得到强有力的结果:科罗夫金的理论和斯通·韦尔斯特拉的理论。一系列定理实际上回答了一个问题,即逼近问题,即给出一种用多项式(三角多项式)逼近连续函数的方法。如何判断这种方法是否可靠。接下来,我给出一个在20世纪50年代证明的结果,这个结果非常漂亮,不涉及困难的数学概念。

总之,我觉得都非常难学,以前觉得高数难,概率论难,自从学了这两门学科,我觉得没有比他们难,因此建议:非数学专业别学。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式