ⅹ√x的原函数是什么?
6个回答
黄先生
2024-12-27 广告
2024-12-27 广告
矩阵切换器就是将一路或多路视音频信号分别传输给一个或者多个显示设备,如两台电脑主机要共用一个显示器,矩阵切换器可以将两台电脑主机上的内容renyi切换到同一个或多个显示器上;迈拓维矩矩阵切换器种类齐全,性价比高,支持多种控制方式,为工程商采...
点击进入详情页
本回答由黄先生提供
2022-06-20
展开全部
2022年高考数学全国卷I的多选压轴题,是一道关于导数、函数奇偶性,包括导数奇偶性以及周期函数的问题。题目对高考生来说,的确难了一些。甚至有人说在这道题上看到了出题人满满的恶意 ,您怎么看呢?
已知函数f(x)及其导函数f’(x)的定义域均为R,即g(x)=f’(x). 若f(3/2-2x), g(2+x)均为偶函数则( ).
A. f(0)=0;B. g(-1/2)=0;C. f(-1)=f(4);D. g(-1)=g(2)
老黄想说,这道题的信息量实在是太大了。
分析:(1)由f(3/2-2x)是偶函数可知,f(3/2-2x)有对称轴x=3/2. 因为f(3/2-2(-x))=f(3/2-2x)=f(3/2+2x).
而C选项中,f的两个自变量-1和4的中点正好就是3/2,所以它们是轴对称点,函数值相等。因此C选项是正确的。
可能大多数考生知道,当f(a-x)=f(a+x)时,函数就以x=a为对称轴。但是面对式子中的x系数不是1,而是2,可能就会犯嘀咕了。还未参加高考的高中生记好了,这里不管x的系数是什么,只要f(a-bx)=f(a+bx) (b不等于0),函数就以x=a为对称轴。
(2)同理g(2+x)也有对称轴x=2. 而D选项中g的两个自变量-1和2的中点并不是2,所以由g(2+x)偶函数的性质,不能确定D选项是正确的,但也不能在这里确定D是错误的。
(3)根据“导数是偶函数的原函数图像在y轴上有对称中心”,可知,f(2+x)有对称中心(-2,y),这里的y不一定等于0. 它其实是“奇函数的导数是偶函数”的“逆定理”。因为“偶函数的原函数是奇函数”是一个假命题,所以要调整成这样的一个定理。这个知识连大学生都不一定能弄懂,更不要说高考生了。
(4)当函数图像有对称轴x=a, 对称中心(b,y)时,该函数是一个周期函数,且最小正周期为t=|a-b|×4。你说这样的知识,去哪里能学到啊?也就是老黄有心思去钻研并把它明确出来了。
所以f(x)是一个以t=|3/2-2|×4=2为最小正周期的周期函数,即f(x)=f(x+2k) k为任意整数. 到这里就可以推知A选项中的f(0)=f(-2)=y,不一定等于0. 因此A要排除。
(5)由导数与原函数的周期同一性可知, g(x)=g(x+2k). 再看D选项,由周期性不能得到g(-1)=g(2)的结论。结合(2)中的结论,就可以排除D选项了。
(6)由“偶函数可导,则在对称轴上的导数一定为0”可知,g(3/2)=0, 再由(5)中g的周期性,就可以知道g(-1/2)=0. 所以B选项是正确的。
综上正确的选项有B和C. 当然,如果我们可以构造一个符合条件的函数,比如f(x)=cos(πx-3π/2)+1,则g(x)=f'(x)=πsin(πx-3π/2),做出如下图像,就一目了然了。但是如果不推出上面的这些结论,又如何能轻易构造出符合条件的函数呢?
最后给大家提一点不讨喜的忠告,特别是对那些还没有参加高考的高中生,与其埋怨题目出得太难,不如像老黄一样,享受从题目中深挖出知识点的乐趣,这样对将来的高考,会更加有帮助,您说呢?
已知函数f(x)及其导函数f’(x)的定义域均为R,即g(x)=f’(x). 若f(3/2-2x), g(2+x)均为偶函数则( ).
A. f(0)=0;B. g(-1/2)=0;C. f(-1)=f(4);D. g(-1)=g(2)
老黄想说,这道题的信息量实在是太大了。
分析:(1)由f(3/2-2x)是偶函数可知,f(3/2-2x)有对称轴x=3/2. 因为f(3/2-2(-x))=f(3/2-2x)=f(3/2+2x).
而C选项中,f的两个自变量-1和4的中点正好就是3/2,所以它们是轴对称点,函数值相等。因此C选项是正确的。
可能大多数考生知道,当f(a-x)=f(a+x)时,函数就以x=a为对称轴。但是面对式子中的x系数不是1,而是2,可能就会犯嘀咕了。还未参加高考的高中生记好了,这里不管x的系数是什么,只要f(a-bx)=f(a+bx) (b不等于0),函数就以x=a为对称轴。
(2)同理g(2+x)也有对称轴x=2. 而D选项中g的两个自变量-1和2的中点并不是2,所以由g(2+x)偶函数的性质,不能确定D选项是正确的,但也不能在这里确定D是错误的。
(3)根据“导数是偶函数的原函数图像在y轴上有对称中心”,可知,f(2+x)有对称中心(-2,y),这里的y不一定等于0. 它其实是“奇函数的导数是偶函数”的“逆定理”。因为“偶函数的原函数是奇函数”是一个假命题,所以要调整成这样的一个定理。这个知识连大学生都不一定能弄懂,更不要说高考生了。
(4)当函数图像有对称轴x=a, 对称中心(b,y)时,该函数是一个周期函数,且最小正周期为t=|a-b|×4。你说这样的知识,去哪里能学到啊?也就是老黄有心思去钻研并把它明确出来了。
所以f(x)是一个以t=|3/2-2|×4=2为最小正周期的周期函数,即f(x)=f(x+2k) k为任意整数. 到这里就可以推知A选项中的f(0)=f(-2)=y,不一定等于0. 因此A要排除。
(5)由导数与原函数的周期同一性可知, g(x)=g(x+2k). 再看D选项,由周期性不能得到g(-1)=g(2)的结论。结合(2)中的结论,就可以排除D选项了。
(6)由“偶函数可导,则在对称轴上的导数一定为0”可知,g(3/2)=0, 再由(5)中g的周期性,就可以知道g(-1/2)=0. 所以B选项是正确的。
综上正确的选项有B和C. 当然,如果我们可以构造一个符合条件的函数,比如f(x)=cos(πx-3π/2)+1,则g(x)=f'(x)=πsin(πx-3π/2),做出如下图像,就一目了然了。但是如果不推出上面的这些结论,又如何能轻易构造出符合条件的函数呢?
最后给大家提一点不讨喜的忠告,特别是对那些还没有参加高考的高中生,与其埋怨题目出得太难,不如像老黄一样,享受从题目中深挖出知识点的乐趣,这样对将来的高考,会更加有帮助,您说呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-03-30
展开全部
ⅹ√x化为指数的形式写就是x的二分之三次方。
对x的二分之三次方求积分得原函数为x的二分之五次方+C
这类形式的函数求原函数通通化成指数形式x的a次方再求积分直接可以套公式了
对x的二分之三次方求积分得原函数为x的二分之五次方+C
这类形式的函数求原函数通通化成指数形式x的a次方再求积分直接可以套公式了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
是根号下x的三次方
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2022-06-20
展开全部
2022年高考数学全国卷I的多选压轴题,是一道关于导数、函数奇偶性,包括导数奇偶性以及周期函数的问题。题目对高考生来说,的确难了一些。甚至有人说在这道题上看到了出题人满满的恶意 ,您怎么看呢?
已知函数f(x)及其导函数f’(x)的定义域均为R,即g(x)=f’(x). 若f(3/2-2x), g(2+x)均为偶函数则( ).
A. f(0)=0;B. g(-1/2)=0;C. f(-1)=f(4);D. g(-1)=g(2)
老黄想说,这道题的信息量实在是太大了。
分析:(1)由f(3/2-2x)是偶函数可知,f(3/2-2x)有对称轴x=3/2. 因为f(3/2-2(-x))=f(3/2-2x)=f(3/2+2x).
而C选项中,f的两个自变量-1和4的中点正好就是3/2,所以它们是轴对称点,函数值相等。因此C选项是正确的。
可能大多数考生知道,当f(a-x)=f(a+x)时,函数就以x=a为对称轴。但是面对式子中的x系数不是1,而是2,可能就会犯嘀咕了。还未参加高考的高中生记好了,这里不管x的系数是什么,只要f(a-bx)=f(a+bx) (b不等于0),函数就以x=a为对称轴。
(2)同理g(2+x)也有对称轴x=2. 而D选项中g的两个自变量-1和2的中点并不是2,所以由g(2+x)偶函数的性质,不能确定D选项是正确的,但也不能在这里确定D是错误的。
(3)根据“导数是偶函数的原函数图像在y轴上有对称中心”,可知,f(2+x)有对称中心(-2,y),这里的y不一定等于0. 它其实是“奇函数的导数是偶函数”的“逆定理”。因为“偶函数的原函数是奇函数”是一个假命题,所以要调整成这样的一个定理。这个知识连大学生都不一定能弄懂,更不要说高考生了。
(4)当函数图像有对称轴x=a, 对称中心(b,y)时,该函数是一个周期函数,且最小正周期为t=|a-b|×4。你说这样的知识,去哪里能学到啊?也就是老黄有心思去钻研并把它明确出来了。
所以f(x)是一个以t=|3/2-2|×4=2为最小正周期的周期函数,即f(x)=f(x+2k) k为任意整数. 到这里就可以推知A选项中的f(0)=f(-2)=y,不一定等于0. 因此A要排除。
(5)由导数与原函数的周期同一性可知, g(x)=g(x+2k). 再看D选项,由周期性不能得到g(-1)=g(2)的结论。结合(2)中的结论,就可以排除D选项了。
(6)由“偶函数可导,则在对称轴上的导数一定为0”可知,g(3/2)=0, 再由(5)中g的周期性,就可以知道g(-1/2)=0. 所以B选项是正确的。
综上正确的选项有B和C. 当然,如果我们可以构造一个符合条件的函数,比如f(x)=cos(πx-3π/2)+1,则g(x)=f'(x)=πsin(πx-3π/2),做出如下图像,就一目了然了。但是如果不推出上面的这些结论,又如何能轻易构造出符合条件的函数呢?
最后给大家提一点不讨喜的忠告,特别是对那些还没有参加高考的高中生,与其埋怨题目出得太难,不如像老黄一样,享受从题目中深挖出知识点的乐趣,这样对将来的高考,会更加有帮助,您说呢?
已知函数f(x)及其导函数f’(x)的定义域均为R,即g(x)=f’(x). 若f(3/2-2x), g(2+x)均为偶函数则( ).
A. f(0)=0;B. g(-1/2)=0;C. f(-1)=f(4);D. g(-1)=g(2)
老黄想说,这道题的信息量实在是太大了。
分析:(1)由f(3/2-2x)是偶函数可知,f(3/2-2x)有对称轴x=3/2. 因为f(3/2-2(-x))=f(3/2-2x)=f(3/2+2x).
而C选项中,f的两个自变量-1和4的中点正好就是3/2,所以它们是轴对称点,函数值相等。因此C选项是正确的。
可能大多数考生知道,当f(a-x)=f(a+x)时,函数就以x=a为对称轴。但是面对式子中的x系数不是1,而是2,可能就会犯嘀咕了。还未参加高考的高中生记好了,这里不管x的系数是什么,只要f(a-bx)=f(a+bx) (b不等于0),函数就以x=a为对称轴。
(2)同理g(2+x)也有对称轴x=2. 而D选项中g的两个自变量-1和2的中点并不是2,所以由g(2+x)偶函数的性质,不能确定D选项是正确的,但也不能在这里确定D是错误的。
(3)根据“导数是偶函数的原函数图像在y轴上有对称中心”,可知,f(2+x)有对称中心(-2,y),这里的y不一定等于0. 它其实是“奇函数的导数是偶函数”的“逆定理”。因为“偶函数的原函数是奇函数”是一个假命题,所以要调整成这样的一个定理。这个知识连大学生都不一定能弄懂,更不要说高考生了。
(4)当函数图像有对称轴x=a, 对称中心(b,y)时,该函数是一个周期函数,且最小正周期为t=|a-b|×4。你说这样的知识,去哪里能学到啊?也就是老黄有心思去钻研并把它明确出来了。
所以f(x)是一个以t=|3/2-2|×4=2为最小正周期的周期函数,即f(x)=f(x+2k) k为任意整数. 到这里就可以推知A选项中的f(0)=f(-2)=y,不一定等于0. 因此A要排除。
(5)由导数与原函数的周期同一性可知, g(x)=g(x+2k). 再看D选项,由周期性不能得到g(-1)=g(2)的结论。结合(2)中的结论,就可以排除D选项了。
(6)由“偶函数可导,则在对称轴上的导数一定为0”可知,g(3/2)=0, 再由(5)中g的周期性,就可以知道g(-1/2)=0. 所以B选项是正确的。
综上正确的选项有B和C. 当然,如果我们可以构造一个符合条件的函数,比如f(x)=cos(πx-3π/2)+1,则g(x)=f'(x)=πsin(πx-3π/2),做出如下图像,就一目了然了。但是如果不推出上面的这些结论,又如何能轻易构造出符合条件的函数呢?
最后给大家提一点不讨喜的忠告,特别是对那些还没有参加高考的高中生,与其埋怨题目出得太难,不如像老黄一样,享受从题目中深挖出知识点的乐趣,这样对将来的高考,会更加有帮助,您说呢?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询