整数是什么意思
整数(integer)是正整数、零、负整数的集合。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、…、-n、…(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
如果不加特殊说明,所涉及的数都是整数,所采用的字母也表示整数。
分类:
1.正整数,即大于0的整数如,1,2,3······直到n。
它是从古代以来人类计数的工具。可以说,从“1头牛,2头牛”或是“5个人,6个人”抽象化成正整数的过程是相当自然的。
2.零,既不是正整数,也不是负整数,它是介于正整数和负整数的数。
零不仅表示“没有”(“无”),更是表示空位的符号。中国古代用算筹计算数并进行运算时,空位不放算筹,虽无空位记号,但仍能为位置计数与四则运算创造良好的条件。印度-阿拉伯命数法中的零(zero)来自印度的(Sunya)字,其原意也是“空”或“空白”。
3.负整数,即小于0的整数如,-1,-2,-3······直到-n。(n为正整数)
注:零和正整数统称自然数。
整数也可分为奇数和偶数两类。
中国最早引进了负数。《九章算术.方程》中论述的“正负数”,就是整数的加减法。减法的需要也促进了负整数的引入。减法运算可看作求解方程a-b=c,如果a、b是自然数,则所给方程未必有自然数解。为了使它恒有解,就有必要把自然数系扩大为整数系。
2022-12-01 · 百度认证:北京惠企网络技术有限公司官方账号
整数(integer)就是像-3,-2,-1,0,1,2,3,10等这样的数。
整数的全体构成整数集,整数集是一个数环。在整数系中,零和正整数统称为自然数。-1、-2、-3、?、-n、?(n为非零自然数)为负整数。则正整数、零与负整数构成整数系。整数不包括小数、分数。
如果不加特殊说明,我们所涉及的数都是整数,所采用的字母也表示整数。
扩展资料:
基数理论:
基数理论则把自然数定义为有限集的基数,这种理论提出,两个可以在元素之间建立一一对应关系的有限集具有共同的数量特征,这一特征叫做基数 。这样 ,所有单元素集{x},{y},{a},{b}等具有同一基数,记作1 。
凡能与两个手指头建立一一对应的集合,它们的基数相同,记作2,等等 。自然数的加法、乘法运算可以在序数或基数理论中给出定义,并且两种理论下的运算是一致的。
自然数在日常生活中起了很大的作用,人们广泛使用自然数。自然数是人类历史上最早出现的数,自然数在计数和测量中有着广泛的应用。人们还常常用自然数来给事物标号或排序,如城市的公共汽车路线,门牌号码,邮政编码等。
“0”是否包括在自然数之内存在争议,有人认为自然数为正整数,即从1开始算起;而也有人认为自然数为非负整数,即从0开始算起。关于这个问题尚无一致意见。不过,在数论中,多采用前者;在集合论中,则多采用后者。我国中小学教材将0归为自然数。
自然数是整数,但整数不全是自然数。例如:-1,-2,-3,...是整数,而不是自然数。总之一句话自然数就是大于等于0的整数。全体非负整数组成的集合称为非负整数集(即自然数集)。
参考资料来源:百度百科——整数
广告 您可能关注的内容 |