求1╱(3cos2x+4sin2x)的不定积分
1个回答
展开全部
3cos2x+4sin2x
= 5[ (3/5)cos2x + (4/5)sin2x]
=5cos(2x- arccos(3/5))
∫dx/(3cos2x+4sin2x)
=(1/5)∫dx/cos(2x- arccos(3/5))
=(1/5)∫sec(2x- arccos(3/5)) dx
=(1/10)ln|sec(2x- arccos(3/5)) + tan(2x- arccos(3/5))| + C
= 5[ (3/5)cos2x + (4/5)sin2x]
=5cos(2x- arccos(3/5))
∫dx/(3cos2x+4sin2x)
=(1/5)∫dx/cos(2x- arccos(3/5))
=(1/5)∫sec(2x- arccos(3/5)) dx
=(1/10)ln|sec(2x- arccos(3/5)) + tan(2x- arccos(3/5))| + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询