函数一致连续性的判别方法
展开全部
函数一致连续性的判别方法如下:
若f(x)在区间上(a,b)(可以是闭区间,开区间,或者无限区间)上连续,且其一阶导数有界,即存在M>0,使得|f'(x)|<=M,则f(x)在区间(a,b)上一致连续。
f(x)=e^x,在(0,+∞)上,f‘(x)=e^x显然是无界的,所以e^x在(0,+∞)是非一致连续的。但是在闭区间上它是一致连续的。所以一致连续的判断还要看它所取区间。
用一致连续的定义当然能解决所有函数一致连续性的判定,但是用定义证明往往需要很高的技巧,而且在本身不知道是否一致连续时,就更加困难了。
因此在判定是否一致连续时,使用相关的定理会使问题变得简单的多。首先闭区间上连续的函数一定一致连续,这自不必说。对于有限开区间,也有很好的定理,由于是充要条件,所以这个定理完全解决了有限开区间上一致连续的判断问题。
所以判断一致连续的困难就在于无限开区间,它也有相关的定理。注意第一条不是一致连续的必要条件,例如y=x在x趋于无穷时无有限极限,甚至无界,但也是一致连续的,另外有界也不能保证一致连续,例如y=sinx^2。用这三个定理可以很方便的解决绝大多数函数一致连续的判定问题。
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询