讨论函数的一致连续性有何意义?
1个回答
展开全部
讨论函数的一致连续性意义:所谓一致连续,就是要求当函数的自变量的改变很小时,其函数值的改变也很小,从而要求函数的导数值不能太大——当然只要有界即可。
函数f(x)在[a,b]上一致连续的充分必要条件是在[a,b]上连续。
函数f(x)在[a,b)上一致连续的充分必要条件是f(x)在(a,b)上连续且f(b-)存在。
意义
从上述定义中可以看出,当函数在区间I上一致连续时,无论在区间I上的任何部分,只要自变量的两个数值接近到一定程度,总可以使相应的函数值达到预先指定的接近程度。
某一函数f在区间I上有定义,如果对于任意的ε>0,总有δ>0 ,使得在区间I上的任意两点x'和x",当满足|x'-x"|<δ时,|f(x')-f(x")|<ε恒成立,则该函数在区间I上一致连续。对于在闭区间上的连续函数,其在该区间上必一致连续。一致连续的函数必定是连续函数。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询