拉普拉斯定理及证明?

 我来答
惠企百科
2022-12-14 · 百度认证:北京惠企网络技术有限公司官方账号
惠企百科
惠企百科网是一家科普类综合网站,关注热门中文知识,集聚互联网精华中文知识,本着自由开放、分享价值的基本原则,向广大网友提供专业的中文知识平台。
向TA提问
展开全部

设B是一个

 的矩阵,

 为了明确起见,将

 的系数记为

 其中

考虑B的行列式|B|中的每个含有

 的项,它的形式为:

其中的置换τ∈Sn使得τ(i)=j,而σ∈Sn-1是唯一的将除了i以外的其他元素都映射到与τ相同的像上去的置换。显然,每个τ都对应着唯一的σ,每一个σ也对应着唯一的τ。因此我们创建了Sn−1与{τ∈Sn:τ(i)=j}之间的一个双射。置换τ可以经过如下方式从σ得到:

定义σ'∈Sn使得对于1≤k≤n−1,σ'(k)=σ(k)并且σ'(n)=n,于是sgnσ'=sgnσ。然后

由于两个轮换分别可以被写成

 和

 个对换,因此

因此映射σ↔τ是双射。由此:

 

 

 

从而拉普拉斯展开成立。

扩展资料:

拉普拉斯定理

拉普拉斯在1772年的论文中给出了行列式展开的一般形式,称为拉普拉斯定理。拉普拉斯定理建立在子式和余子式的基础上,说明了如果将B关于某k行的每一个子式和对应的代数余子式的乘积加起来,那么得到的仍然是B的行列式。

定理的证明与按一行(一列)展开的情况一样,都是通过建立置换间的双射来证明两者相等。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式