线性代数 把矩阵化为行最简形矩阵的方法
化成下三角的技巧主要就是“从左至右,从下至上”,找看起来最容易一整行都化为0或者尽可能都化为0的一行(一般是最下面一行),将其放至最后一行,然后通过初等变换将这一行的元素从左至右依次设法都变成0直至无法再化为0为止。
接着从这一行的上一行开始依次从左至右化为0,不停重复直至处理完第一行。最后要检查首非零元是否从最后一行开始依次往左移,如不是,要换行调整到是为止。例:
2341。
0123。
0001。
这样就算完成了第一步。接着保证首非零元都是1,并且保证首非零元所在“列”都为0即可,本例可处理为:
1 0 -1 0。
0 1 2 0。
0 0 0 1。
扩展资料:
现代线性代数已经扩展到研究任意或无限维空间。一个维数为 n 的向量空间叫做n 维空间。在二维和三维空间中大多数有用的结论可以扩展到这些高维空间。尽管许多人不容易想象n 维空间中的向量,这样的向量(即n 元组)用来表示数据非常有效。
由于作为 n 元组,向量是n 个元素的“有序”列表,大多数人可以在这种框架中有效地概括和操纵数据。比如,在经济学中可以使用 8 维向量来表示 8 个国家的国民生产总值(GNP)。
当所有国家的顺序排定之后,比如(中国、美国、英国、法国、德国、西班牙、印度、澳大利亚),可以使用向量(v1,v2,v3,v4,v5,v6,v7,v8)显示这些国家某一年各自的 GNP。这里,每个国家的 GNP 都在各自的位置上。
参考资料来源:百度百科-线性代数
化简的方法主要有:
1.某一行乘以一个非零的常数;
2.交换两行的位置;
3.某一行减去另外一行和某个常数的积;
这些方法保证了矩阵的等价不变形。
注意:化简矩阵具有灵活性,不同的人化简的结果也不同,但必须遵守两个原则:1.尽量使矩阵的形式简单,一般化为上三角形;
2.保持矩阵的等价性不变。
化简矩阵的目的是找到一个和原矩阵等价的,形式比较简单的矩阵,如上三角形,下三角形等。原矩阵和化简后的矩阵等价是指它们可以互相表出。
化简的方法主要有:
1.某一行乘以一个非零的常数与另外一个行进行线性运算;
2.交换任意两行的位置;
注意:化简矩阵具有灵活性,不同的人化简的结果也不同,但必须遵守两个原则:
1.尽量使矩阵的形式简单,一般化为上三角形;
2.保持矩阵的等价性不变。