
利用矩阵的初等行变换,求逆矩阵
1个回答
展开全部
[A|E] =
1 1 1 1 1 0 0 0
-1 1 1 1 0 1 0 0
-1 -1 1 1 0 0 1 0
-1 -1 -1 1 0 0 0 1
=
1 1 1 1 1 0 0 0
0 2 2 2 1 1 0 0
0 0 2 2 1 0 1 0
0 0 0 2 1 0 0 1
=
1 1 1 1 1 0 0 0
0 2 2 2 1 1 0 0
0 0 2 2 1 0 1 0
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 1 0 1/2 0 0 -1/2
0 2 2 0 0 1 0 -1
0 0 2 0 0 0 1 -1
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 1 0 1/2 0 0 -1/2
0 2 2 0 0 1 0 -1
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 0 0 1/2 0 -1/2 0
0 2 0 0 0 1 -1 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 0 0 1/2 0 -1/2 0
0 1 0 0 0 1/2 -1/2 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 0 0 0 1/2 -1/2 0 0
0 1 0 0 0 1/2 -1/2 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
A^(-1) =
1/2 -1/2 0 0
0 1/2 -1/2 0
0 0 1/2 -1/2
1/2 0 0 1/2
1 1 1 1 1 0 0 0
-1 1 1 1 0 1 0 0
-1 -1 1 1 0 0 1 0
-1 -1 -1 1 0 0 0 1
=
1 1 1 1 1 0 0 0
0 2 2 2 1 1 0 0
0 0 2 2 1 0 1 0
0 0 0 2 1 0 0 1
=
1 1 1 1 1 0 0 0
0 2 2 2 1 1 0 0
0 0 2 2 1 0 1 0
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 1 0 1/2 0 0 -1/2
0 2 2 0 0 1 0 -1
0 0 2 0 0 0 1 -1
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 1 0 1/2 0 0 -1/2
0 2 2 0 0 1 0 -1
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 0 0 1/2 0 -1/2 0
0 2 0 0 0 1 -1 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 1 0 0 1/2 0 -1/2 0
0 1 0 0 0 1/2 -1/2 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
[A|E] =
1 0 0 0 1/2 -1/2 0 0
0 1 0 0 0 1/2 -1/2 0
0 0 1 0 0 0 1/2 -1/2
0 0 0 1 1/2 0 0 1/2
A^(-1) =
1/2 -1/2 0 0
0 1/2 -1/2 0
0 0 1/2 -1/2
1/2 0 0 1/2
追问
第一步到第二步怎么来的
追答
将第1行
加到
第2,3,4行
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询