用待定系数法求数列通项公式!!!要详细步骤
展开全部
(1)
a1=1
2a(n+1)= 3an +3
a(n+1) = (3/2)an + 3/2
a(n+1) + 3 = (3/2)(an + 3 )
=> {an + 3} 是等比数列, q=3/2
an + 3 = (3/2)^(n-1) .(a1 + 3)
an = -3 + 4.(3/2)^(n-1)
(2)
a1=1
a(n+1) = 3an +2
a(n+1) + 1 = 3(an + 1)
=>{an + 1} 是等比数列, q=3
an + 1= 3^(n-1) .( a1 +1)
an = -1 + 2. 3^(n-1)
(3)
a1=1
a(n+1) = 2an +1
a(n+1) + 1 = 2( an + 1)
=>{an + 1} 是等比数列, q=2
an +1 =2^(n-1) . (a1+1)
an = -1+ 2^n
a1=1
2a(n+1)= 3an +3
a(n+1) = (3/2)an + 3/2
a(n+1) + 3 = (3/2)(an + 3 )
=> {an + 3} 是等比数列, q=3/2
an + 3 = (3/2)^(n-1) .(a1 + 3)
an = -3 + 4.(3/2)^(n-1)
(2)
a1=1
a(n+1) = 3an +2
a(n+1) + 1 = 3(an + 1)
=>{an + 1} 是等比数列, q=3
an + 1= 3^(n-1) .( a1 +1)
an = -1 + 2. 3^(n-1)
(3)
a1=1
a(n+1) = 2an +1
a(n+1) + 1 = 2( an + 1)
=>{an + 1} 是等比数列, q=2
an +1 =2^(n-1) . (a1+1)
an = -1+ 2^n
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询