如何快速求一个数平方的方法
1、求任意一个两位数的平方
方法:先把这个数看成 5 的倍数与一个小于 5 的数的和(或差)的形式,再用这两个数的平方和加上(或减去)这两个数的积的 2 倍。
2、求任意一个两位数的平方
方法:用这个数加上它的个位数的补数的和乘以它们的差,再用这个积加上这个补数的平方。
3、求一千零几的平方
方法:先写上这个数加上个位数的 2 倍的和,再写上一个 0,最后写上个位数的平方(个位数的平方小于 10,就在它前面补一个 0)。
4、求九百九十几的平方
方法:先写上 1000 减去这个数的补数的 2 倍的差,再写一个 0,最后写上补数的平方(补数的平方小于 10,就在它前面补一个 0)。
5、求末两位是 25 的数的平方
方法:用十位前面的数乘以在它后面添上 5 的数,在积后添上 625。
扩展资料:
关于的平方故事
相传印度有位外来的大臣跟国王下棋,国王输了,就答应满足他一个要求:在棋盘上放米粒。第一格放1粒,第二格放2粒,然后是4粒,8粒,16粒…直到放到64格。国王哈哈大笑,认为他很傻,以为只要这么一点米。
按照大臣的要求,放满64个格,需米 2的64次方间1粒。这个数是18446744073709551615,是二十位的数字。这些米别说倾空国库,就是整个印度,甚至全世界的米,都无法满足这个大臣的要求!
就是所谓的“本数加其尾,乘头居首位,为求平方积,再加尾乘尾。”
个位为1、2、3的两位数的平方计算方法:
对于个位是1、2、3的两位数,可以用这个数加它的个位数再乘以它的十位数,最后在算出的得数后面添加个位数的平方即可。
例如: 求23的平方,将23加3得26,26再乘2得52,52后面添加3的平方9,即可得529,这就是23平方的得数。
再比如求52的平方,可将52加2得54,再乘以5得270,后面添加2的平方4,即可得2704。
个位是4、6、7、8的两位数。
这一组两位数的平方计算法和第一组两位数平方的计算法相似,不同之处是因为这一组两位数个位的平方均超过10,所以在最后添加个位数的平方时须把它的十位数进到末位那个数,再把它的个位数添列到后面。
例如: 求26的平方,26 + 6 得 32 ,32×2得 64,因为个位数6的平方是36 ,须将3进到末一位,所以,64 + 3得67 ,67后面添加6得676,这就是26的平方结果。
再比如求48的平方,48 + 8 得56 ,56×4得224,224+6 (64的十位数)得 230 ,230后面添加 4 (64的个位数),即得 2304 。
以上算法看似步骤多些,但都是极易心算的,熟练之后会觉得非常的简便快捷。
对于个位是 5 的两位数,当然也可以用上述方法心算,还有一种更简便的方法: 只须将十位数加1再乘十位数,后边再添加 25 即可得出结果。
例如求 45 的平方,用4 乘5 (4+1)得 20 ,20 后面添加 25 ,即可得出 2025 ,就是 45 的平方。
再如求 85 的平方,8×9 得 72,后面添加 25 ,即得 7225 。
此法还可用于一些易算的三位数的平方,如求 105 的平方,10×11得 110 ,那么 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那么 205 的平方就是 42025 了。
最后我们来看个位是9的两位数的平方心算法。
个位是9的两位数计算平方时,可用“这个数加1”的平方,减去“这个数加1”的2倍,再加1即可得出结果。
例如求 29 的平方,“ 29+1 ”的平方是 900 ,减去“ 29+1 ”的2倍60 ,得数是 840 ,再加1得 841 。
再比如求 59 的平方,60的平方是 3600 ,减去60的2倍得3480,最后加1即得 3481 。
(详见我的博客http://cgmcgmwo.blog.163.com/blog/static/4007835200722324150929/)
就是所谓的“本数加其尾,乘头居首位,为求平方积,再加尾乘尾。”
个位为1、2、3的两位数的平方计算方法:
对于个位是1、2、3的两位数,可以用这个数加它的个位数再乘以它的十位数,最后在算出的得数后面添加个位数的平方即可。
例如: 求23的平方,将23加3得26,26再乘2得52,52后面添加3的平方9,即可得529,这就是23平方的得数。
再比如求52的平方,可将52加2得54,再乘以5得270,后面添加2的平方4,即可得2704。
个位是4、6、7、8的两位数。
这一组两位数的平方计算法和第一组两位数平方的计算法相似,不同之处是因为这一组两位数个位的平方均超过10,所以在最后添加个位数的平方时须把它的十位数进到末位那个数,再把它的个位数添列到后面。
例如: 求26的平方,26 + 6 得 32 ,32×2得 64,因为个位数6的平方是36 ,须将3进到末一位,所以,64 + 3得67 ,67后面添加6得676,这就是26的平方结果。
再比如求48的平方,48 + 8 得56 ,56×4得224,224+6 (64的十位数)得 230 ,230后面添加 4 (64的个位数),即得 2304 。
以上算法看似步骤多些,但都是极易心算的,熟练之后会觉得非常的简便快捷。
对于个位是 5 的两位数,当然也可以用上述方法心算,还有一种更简便的方法: 只须将十位数加1再乘十位数,后边再添加 25 即可得出结果。
例如求 45 的平方,用4 乘5 (4+1)得 20 ,20 后面添加 25 ,即可得出 2025 ,就是 45 的平方。
再如求 85 的平方,8×9 得 72,后面添加 25 ,即得 7225 。
此法还可用于一些易算的三位数的平方,如求 105 的平方,10×11得 110 ,那么 105 的平方就是 11025 了; 求205的平方,20×21得 420 ,那么 205 的平方就是 42025 了。
最后我们来看个位是9的两位数的平方心算法。
个位是9的两位数计算平方时,可用“这个数加1”的平方,减去“这个数加1”的2倍,再加1即可得出结果。
例如求 29 的平方,“ 29+1 ”的平方是 900 ,减去“ 29+1 ”的2倍60 ,得数是 840 ,再加1得 841 。
再比如求 59 的平方,60的平方是 3600 ,减去60的2倍得3480,最后加1即得 3481 。
参考资料: 上面的
2015-09-20 · 知道合伙人教育行家
知道合伙人教育行家
向TA提问 私信TA
在算个位数是5的平方时,记住个位数与十位数不变,永远都是25,而更高的一位是1*(1+1).
可能不大明白,举个例子,15*15=225,25不变,而2是1*(1+1),25*25=625,同样25不变,6是2*(2+1),而且115*115=13225,25不变,11*(11+1)=132。
如25*25:2*3=6,后加上5*5=25
为625
再如55*55:5*6=30,后加上5*5=25
为3025