lim(n->无穷)[ln(e^n+x^n)/n]=?其中x>0
展开全部
当x>e时
f(x)=limlnx(1+(e/x)^n)^(1/n)=lnx+limln(1+(e/x)^n)^(1/n)=lnx
当x>e时f(x)=limlne(1+(x/e)^n)^(1/n)=1+limln(1+(x/e)^n)^(1/n)=l
当x=e时
f(x)=ln2e^n/n=1
讨论一下定义域,是连续的
f(x)=limlnx(1+(e/x)^n)^(1/n)=lnx+limln(1+(e/x)^n)^(1/n)=lnx
当x>e时f(x)=limlne(1+(x/e)^n)^(1/n)=1+limln(1+(x/e)^n)^(1/n)=l
当x=e时
f(x)=ln2e^n/n=1
讨论一下定义域,是连续的
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
利用罗密他法则
当e>x>0时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+x^nlnx﹚/﹙e^n+x^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙1+﹙x/e﹚^nlnx﹚/﹙1+﹙x/e﹚^n﹚]
﹙
无穷小﹚
=1/1=1
当x>e>0时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+x^nlnx﹚/﹙e^n+x^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙1+﹙x/e﹚^nlnx﹚/﹙1+﹙x/e﹚^n﹚]
﹙罗比达,无穷大﹚
=lnx
当x=e时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+e^nlne﹚/﹙e^n+e^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙2e^n﹚/﹙2e^n﹚]
=1
当e>x>0时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+x^nlnx﹚/﹙e^n+x^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙1+﹙x/e﹚^nlnx﹚/﹙1+﹙x/e﹚^n﹚]
﹙
无穷小﹚
=1/1=1
当x>e>0时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+x^nlnx﹚/﹙e^n+x^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙1+﹙x/e﹚^nlnx﹚/﹙1+﹙x/e﹚^n﹚]
﹙罗比达,无穷大﹚
=lnx
当x=e时
lim(n->无穷)[ln(e^n+x^n)/n]=lim(n->无穷)[﹙e^n+e^nlne﹚/﹙e^n+e^n﹚]
﹙罗比达,无穷大﹚
=lim(n->无穷)[﹙2e^n﹚/﹙2e^n﹚]
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询