微积分题目求解
2个回答
展开全部
分享一种解法。∵ρ=lim(n→∞)丨a(n+1)/an丨=lim(n→∞)(2n-1)/(2n+1)=1,∴收敛半径R=1/ρ=1。
又,lim(n→∞)丨a(n+1)x^(2n+1)/(an)x^(2n-1)丨=x²/R<1时,级数收敛。∴其收敛区间为x²<1,-1<x<1。
当x=±1时,-∑[(-1)^(n-1)]/(2n-1)是交错级数,满足莱布尼兹判别法的条件,收敛。∴该级数收敛域为-1≤x≤1。
设S(x)=∑[(-1)^(n-1)]x^(2n-1)/(2n-1)。对x求导、在其收敛区间 求和,∴S'(x)=∑(-x²)^(n-1)=1/(1+x²)。而,S(0)=0,∴S(x)=∫(0,x)S'(x)dx=arctanx。
所求级数∑[(-1)^(n-1)]3^[(2n-1)/2]/(2n-1)之和,是S(x)在x=√3时的表达式。此时,x=√3不在其收敛域内,发散。故,其和极限不存在。
供参考。
又,lim(n→∞)丨a(n+1)x^(2n+1)/(an)x^(2n-1)丨=x²/R<1时,级数收敛。∴其收敛区间为x²<1,-1<x<1。
当x=±1时,-∑[(-1)^(n-1)]/(2n-1)是交错级数,满足莱布尼兹判别法的条件,收敛。∴该级数收敛域为-1≤x≤1。
设S(x)=∑[(-1)^(n-1)]x^(2n-1)/(2n-1)。对x求导、在其收敛区间 求和,∴S'(x)=∑(-x²)^(n-1)=1/(1+x²)。而,S(0)=0,∴S(x)=∫(0,x)S'(x)dx=arctanx。
所求级数∑[(-1)^(n-1)]3^[(2n-1)/2]/(2n-1)之和,是S(x)在x=√3时的表达式。此时,x=√3不在其收敛域内,发散。故,其和极限不存在。
供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |