对数恒等式的证明
1个回答
展开全部
在对数中,存在这样一个恒等式:在a>0且a≠1,N>0的情况下,a^(LogaN)=N;证明:在a>0且a≠1,N>0时
设:LogaN=t,(t∈R)
则有a^t=N;
a^(LogaN)=a^t=N;
证毕
设:LogaN=t,(t∈R)
则有a^t=N;
a^(LogaN)=a^t=N;
证毕
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
图为信息科技(深圳)有限公司
2021-01-25 广告
2021-01-25 广告
边缘计算可以咨询图为信息科技(深圳)有限公司了解一下,图为信息科技(深圳)有限公司(简称:图为信息科技)是基于视觉处理的边缘计算方案解决商。作为一家创新企业,多年来始终专注于人工智能领域的发展,致力于为客户提供满意的解决方案。...
点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询