在三角形ABC中,AB=2根号5,AC=4,BC=2,以AB为边向三角形ABC外作三角形ABD,使

在三角形ABC中,AB=2根号5,AC=4,BC=2,以AB为边向三角形ABC外作三角形ABD,使三角形ABD为等腰直角三角形,求线段CD长?... 在三角形ABC中,AB=2根号5,AC=4,BC=2,以AB为边向三角形ABC外作三角形ABD,使三角形ABD为等腰直角三角形,求线段CD长? 展开
 我来答
liulanglover
2014-03-20 · TA获得超过3.5万个赞
知道大有可为答主
回答量:8277
采纳率:72%
帮助的人:3149万
展开全部
解:
∵AC=4,BC=2,AB=2倍根号5,∴AC2+BC2=AB2,∴△ACB为直角三角形,∠ACB=90°.分三种情况:如图(1),过点D作DE⊥CB,垂足为点E.∵DE⊥CB(已知) ∴∠BED=∠ACB=90°(垂直的定义),∴∠CAB+∠CBA=90°(直角三角形两锐角互余),∵△ABD为等腰直角三角形(已知),∴AB=BD,∠ABD=90°(等腰直角三角形的定义),∴∠CBA+∠DBE=90°(平角的定义),∴∠CAB=∠EBD(同角的余角相等),在△ACB与△BED中,∵∠ACB=∠BED,∠CAB=∠EBD,AB=BD(已证),∴△ACB≌△BED(AAS),∴BE=AC=4,DE=CB=2(全等三角形对应边相等),∴CE=6(等量代换)
根据勾股定理得:CD=2√10;
如图(2),过点D作DE⊥CA,垂足为点E.∵BC⊥CA(已知) ∴∠AED=∠ACB=90°(垂直的定义) ∴∠EAD+∠EDA=90°(直角三角形两锐角互余)∵△ABD为等腰直角三角形(已知) ∴AB=AD,∠BAD=90°(等腰直角三角形的定义)∴∠CAB+∠DAE=90°(平角的定义)∴∠BAC=∠ADE(同角的余角相等)在△ACB与△DEA中,∵∠ACB=∠DEA(已证)∠CAB=∠EDA(已证) AB=DA(已证)∴△ACB≌△DEA(AAS) ∴DE=AC=4,AE=BC=2(全等三角形对应边相等) ∴CE=6(等量代换)根据勾股定理得:CD=2√13;
如图(3),过点D作DE⊥CB,垂足为点E,过点A作AF⊥DE,垂足为点F.∵∠C=90°,∴∠CAB+∠CBA=90°,∵∠DAB+∠DBA=90°,∴∠EBD+∠DAF=90°,∵∠EBD+∠BDE=90°,∠DAF+∠ADF=90°,∴∠DBE=∠ADF,∵∠BED=∠AFD=90°,DB=AD,∴△AFD≌△DEB,易求CD=3√2.
追问
你第一次与第二结果一样,第一结你算错了,也是2倍根号13
谢了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式