如果复数z满足|z+i|+|z-i|=2
1个回答
展开全部
设z=a+bi,a,b是实数
|a+(b+1)i|+|a+(b-1)i|=2
√[a^2+(b+1)^2]+√[a^2+(b-1)^2]=2
√[a^2+(b+1)^2]=2-√[a^2+(b-1)^2]
两边平方
a^2+(b+1)^2=4-4√[a^2+(b-1)^2]+a^2+(b-1)^2
4b=4-4√[a^2+(b-1)^2]
√[a^2+(b-1)^2]=1-b
两边平方
a^2+(b-1)^2=(1-b)^2
所以a=0
且√[a^2+(b-1)^2]>=0
所以1-b>=0
b<=1
所以|z+1+i|
=√[1^2+(b+1)^2]=√[(b+1)^2+1]
b<=1
所以b=-1时,|z+1+i|最小=1
希望对你有所帮助,望采纳
|a+(b+1)i|+|a+(b-1)i|=2
√[a^2+(b+1)^2]+√[a^2+(b-1)^2]=2
√[a^2+(b+1)^2]=2-√[a^2+(b-1)^2]
两边平方
a^2+(b+1)^2=4-4√[a^2+(b-1)^2]+a^2+(b-1)^2
4b=4-4√[a^2+(b-1)^2]
√[a^2+(b-1)^2]=1-b
两边平方
a^2+(b-1)^2=(1-b)^2
所以a=0
且√[a^2+(b-1)^2]>=0
所以1-b>=0
b<=1
所以|z+1+i|
=√[1^2+(b+1)^2]=√[(b+1)^2+1]
b<=1
所以b=-1时,|z+1+i|最小=1
希望对你有所帮助,望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询