已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为______

已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为______.... 已知直三棱柱ABC-A1B1C1的6个顶点都在球O的球面上.若AB=3,AC=4,AB⊥AC,AA1=12,则球O的直径为______. 展开
 我来答
风音2556
2014-12-04 · 超过72用户采纳过TA的回答
知道答主
回答量:151
采纳率:85%
帮助的人:60.3万
展开全部
因为三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,
所以三棱柱的底面是直角三角形,侧棱与底面垂直,
△ABC的外心是斜边的中点,上下底面的中心连线垂直底面ABC,其中点是球心,
即侧面B1BCC1,经过球的球心,球的直径是侧面B1BCC1的对角线的长,
因为AB=3,AC=4,BC=5,BC1=
52+122
=13,
所以球的直径为:13.
故答案为:13
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式