2√3与 3√2的大小
展开全部
第一变为根号12,第二为根号18。第二个大
更多追问追答
追问
2√3为什么为√12
追答
2在根号下为4
4乘3=12
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
三倍根号二大于,,,
追问
为什么?
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2015-03-08
展开全部
证明:假设√2不是无理数,而是有理数。
既然√2是有理数,它必然可以写成两个整数之比的形式:
√2=p/q
又由于p和q没有公因数可以约去,所以可以认为p/q 为既约分数,即最简分数形式。
把 √2=p/q 两边平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由于2q^2是偶数,p 必定为偶数,设p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设√2是有理数引起的。因此√2是无理数。
补充:
有理数必然可以写成两个整数之比的形式
既然√2是有理数,它必然可以写成两个整数之比的形式:
√2=p/q
又由于p和q没有公因数可以约去,所以可以认为p/q 为既约分数,即最简分数形式。
把 √2=p/q 两边平方
得 2=(p^2)/(q^2)
即 2(q^2)=p^2
由于2q^2是偶数,p 必定为偶数,设p=2m
由 2(q^2)=4(m^2)
得 q^2=2m^2
同理q必然也为偶数,设q=2n
既然p和q都是偶数,他们必定有公因数2,这与前面假设p/q是既约分数矛盾。这个矛盾是有假设√2是有理数引起的。因此√2是无理数。
补充:
有理数必然可以写成两个整数之比的形式
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询