已知数列{an}满足前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=(2n+1)?an,求
已知数列{an}满足前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=(2n+1)?an,求数列{bn}的前n项和Tn....
已知数列{an}满足前n项和Sn=2n+1-2.(1)求数列{an}的通项公式;(2)设数列{bn}满足bn=(2n+1)?an,求数列{bn}的前n项和Tn.
展开
1个回答
展开全部
(1)当n≥2时,an=Sn-Sn-1=2n+1-2-(2n-2)=2n+1-2n=2n,
当n=1时,a1=S1=21+1-2=4-2=2,满足an=2n,
∴an=2n,
即数列{an}为等比数列,
∴an=2n.
(2)∵bn=(2n+1)?an,
∴bn=(2n+1)?2n,
则数列{bn}的前n项和Tn=3×2+5×22+7×23+…+(2n+1)?2n,
2Tn=3×22+5×23+7×24+…+(2n-1)?2n+(2n+1)?2n+1,
两式相减得-Tn=6+2×22+2×23+2×24+…+2?2n-(2n+1)?2n+1=6+2×
-(2n+1)?2n+1=-2-(2n-1)2n+1,
即Tn=2+(2n-1)2n+1
当n=1时,a1=S1=21+1-2=4-2=2,满足an=2n,
∴an=2n,
即数列{an}为等比数列,
∴an=2n.
(2)∵bn=(2n+1)?an,
∴bn=(2n+1)?2n,
则数列{bn}的前n项和Tn=3×2+5×22+7×23+…+(2n+1)?2n,
2Tn=3×22+5×23+7×24+…+(2n-1)?2n+(2n+1)?2n+1,
两式相减得-Tn=6+2×22+2×23+2×24+…+2?2n-(2n+1)?2n+1=6+2×
4(1?2n?1) |
1?2 |
即Tn=2+(2n-1)2n+1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询