如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿B

如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、... 如图,在边长为12cm的等边三角形ABC中,点P从点A开始沿AB边向点B以每秒钟1cm的速度移动,点Q从点B开始沿BC边向点C以每秒钟2cm的速度移动.若P、Q分别从A、B同时出发,其中任意一点到达目的地后,两点同时停止运动,求:(1)经过6秒后,BP=______cm,BQ=______cm;(2)经过几秒后,△BPQ是直角三角形?(3)经过几秒△BPQ的面积等于 10 3 cm 2 ? 展开
 我来答
橙sufwt1415
2014-10-12 · TA获得超过240个赞
知道答主
回答量:128
采纳率:40%
帮助的人:52.7万
展开全部
(1)由题意,得
AP=6cm,BQ=12cm.
∵△ABC是等边三角形,
∴AB=BC=12cm,
∴BP=12-6=6cm.

(2)∵△ABC是等边三角形,
∴AB=BC=12cm,∠A=∠B=∠C=60°,
当∠PQB=90°时,
∴∠BPQ=30°,
∴BP=2BQ.
∵BP=12-x,BQ=2x,
∴12-x=2×2x,
∴x=
12
5

当∠QPB=90°时,
∴∠PQB=30°,
∴BQ=2PB,
∴2x=2(12-x),
x=6
答6秒或
12
5
秒时,△BPQ是直角三角形;

(3)作QD⊥AB于D,
∴∠QDB=90°,
∴∠DQB=30°,
∴DB=
1
2
BQ=x,
在Rt△DBQ中,由勾股定理,得
DQ=
3
x,
(12-x)
3
x
2
=10
3

解得;x 1 =10,x 2 =2,
∵x=10时,2x>12,故舍去
∴x=2.
答:经过2秒△BPQ的面积等于 10
3
cm 2
故答案为:6、12.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式