怎样证明一个N阶可逆实矩阵A可由两个可逆的对称矩阵的乘积表示

教育界小达人
高粉答主

2021-07-28 · 专注于分享教育知识。
教育界小达人
采纳数:478 获赞数:63711

向TA提问 私信TA
展开全部

利用实Jordan标准型可以证明,任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分。

把A化到相抵标准型A=PDQ^T,其中P和Q可逆,D=diag{I,0},再取B=PQ^{-1}, C=QDQ^T即可。

首先需要证明转秩运算和逆运算的可交换性,即对于可逆矩阵A,有(A^-1)'=(A')^-1(A^-1表示A的逆)。

证明如下:

由于A’*(A^-1)'=(A*A^-1)'=E'=E,因此(A')^-1=(A^-1)'。

这样可以容易的得到上面的结论,即:若A可逆对称,则A^-1可逆对称。

这实际上就是要根据A'=A证明(A^-1)'=A^-1

而有(A^-1)'=(A')^-1=A^-1

矩阵可逆

线性代数中,给定一个n阶方阵A,若存在一n阶方阵B使得AB=BA=E(或AB=E、BA=E任满足一个),其中E为n阶单位矩阵,则称A是可逆的,且B是A的逆阵,记作A^(-1)。

若方阵A的逆阵存在,则称A为非奇异方阵或可逆方阵。

矩阵可逆的充分必要条件

AB=E。

A为满秩矩阵(即r(A)=n)。

A的特征值全不为0。

A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵)。

帐号已注销
2020-06-30 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:168万
展开全部

利用实Jordan标准型可以证明,任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分。

把A化到相抵标准型A=PDQ^T,其中P和Q可逆,D=diag{I,0},再取B=PQ^{-1}, C=QDQ^T即可。

首先需要证明转秩运算和逆运算的可交换性,即对于可逆矩阵A,有(A^-1)'=(A')^-1(A^-1表示A的逆)。证明如下

由于A’*(A^-1)'=(A*A^-1)'=E'=E,因此(A')^-1=(A^-1)'。

这样可以容易的得到上面的结论,即:若A可逆对称,则A^-1可逆对称。

这实际上就是要根据A'=A证明(A^-1)'=A^-1

而有(A^-1)'=(A')^-1=A^-1

扩展资料:

每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。

若对称矩阵A的每个元素均为实数,A是Symmetric矩阵。

一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。

如果X是对称矩阵,那么对于任意的矩阵A,AXAT也是对称矩阵。

n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。

参考资料来源:百度百科-对称矩阵

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
电灯剑客
科技发烧友

推荐于2017-12-16 · 智能家居/数码/手机/智能家电产品都懂点
知道大有可为答主
回答量:1.2万
采纳率:83%
帮助的人:4997万
展开全部
利用实Jordan标准型可以证明任何n阶实矩阵都可以分解成两个实对称矩阵的乘积,A可逆可以得到余下的部分
更多追问追答
追问
能具体说下证明步骤吗?
追答
先把A化到实Jordan标准型A=PJP^{-1},
然后把J的列都颠倒一下J=S*F,其中F=[e_n,...,e_1]
这样就有A=(PSP^T)(P^{-T}FP^{-1})
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式