高数,设f(x)=∫0→x2 xsint dt,求f(x)″
设f(x)=∫0→x2xsintdt,求f(x)″积分后面那是0到x的平方,答案是6xsinx^2+4x^3cosx^2...
设f(x)=∫0→x2 xsint dt,求f(x)″
积分后面那是0到x的平方 ,答案是6xsinx^2+4x^3cosx^2 展开
积分后面那是0到x的平方 ,答案是6xsinx^2+4x^3cosx^2 展开
3个回答
展开全部
解:因为f(x)=< 0→x²>∫xsintdt,所以
f(x)=-xcost+c|< 0→x²>
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
f(x)=-xcost+c|< 0→x²>
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:因为f(x)=∫xsintdt
所以:
f(x)=-xcost+c(0→x2)
=-xcos(x2)+c-(-xcos0+c)
=-xcos(x2)+x
=x[1-cos(x2)]
所以:f'(x)=1-cos(x2)
f"(x)=0。
补充答案:
早说呀!还以为是常数x2呢!还我费了半天劲!
解:因为f(x)=∫xsintdt
所以:
f(x)=-xcost+c(0→x^2)
=-xcos(x^2)+c-(-xcos0+c)
=-xcos(x^2)+x
=x-xcos(x^2)
所以:
f'(x)=1-[cos(x^2)-2(x^2)sin(x^2)]
=1-cos(x^2)+2(x^2)sin(x^2)
f"(x)=[f'(x)]'
=2xsin(x^2)+4xsin(x^2)+4(x^3)cos(x^2)
=6xsin(x^2)+4(x^3)cos(x^2)
所以:
f(x)=-xcost+c(0→x2)
=-xcos(x2)+c-(-xcos0+c)
=-xcos(x2)+x
=x[1-cos(x2)]
所以:f'(x)=1-cos(x2)
f"(x)=0。
补充答案:
早说呀!还以为是常数x2呢!还我费了半天劲!
解:因为f(x)=∫xsintdt
所以:
f(x)=-xcost+c(0→x^2)
=-xcos(x^2)+c-(-xcos0+c)
=-xcos(x^2)+x
=x-xcos(x^2)
所以:
f'(x)=1-[cos(x^2)-2(x^2)sin(x^2)]
=1-cos(x^2)+2(x^2)sin(x^2)
f"(x)=[f'(x)]'
=2xsin(x^2)+4xsin(x^2)+4(x^3)cos(x^2)
=6xsin(x^2)+4(x^3)cos(x^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
此积分是上限x^2的函数,而x^2是x的函数,由复合函数求导链式法则:f'(x)=xsin(x^2)*(2x)=2x^2sinx^2,f"(x)=2(2xsinx^2+x^2(cosx^2)*2x)=4(xsinx^2+x^3cosx^2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询