高数,设f(x)=∫0→x2 xsint dt,求f(x)″
1个回答
展开全部
因为f(x)=∫xsintdt,所以
f(x)=-xcost+c|
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
f(x)=-xcost+c|
=-xcos(x²)+c-(-xcos0+c)
=x-xcos(x²)
所以:f'(x)=1-cos(x²)+2x²sin(x²)
f"(x)=[-cos(x²)]’+[2x²sin(x²)]’
=sin(x²)*2x+[2x²]’sin(x²)+2x²[sin(x²)]’
=2xsin(x²)+4xsin(x²)+2x²cos(x²)[(x²)]’
=2xsin(x²)+4xsin(x²)+4x³cos(x²)
=6xsin(x²)+4x³cos(x²)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询