已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相

已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,... 已知,在△ABC中,AC>AB,BC边的垂直平分线与∠BAC的外角∠PAC的平分线相交于E,与BC相交点D,DE与AC相交于点F.(1)如图1,当∠ABC=3∠ACB时,求证:AB=AE;(2)如图2,当∠BAC=90°,∠ABC=2∠ACB,过点D作AC的垂线,垂足为点H,并延长DH交射线AE于点M,过点E作BP的垂线,垂足为点G,点D1是点D关于直线AC的对称点,试探究AG和MD1之间的数量关系,并证明你的结论. 展开
 我来答
西崽患杜2372
2015-01-01 · TA获得超过113个赞
知道答主
回答量:167
采纳率:75%
帮助的人:71.8万
展开全部
(1)证明:连接BF,如图1.
设∠ACB=x,则∠ABC=3x,
∵FD垂直平分BC,
∴FB=FC,
∴∠FBC=∠FCB=x,
∴∠ABF=∠AFB=2x,
∴AB=AF,∠PAC=4x.
∵AE平分∠PAC,
∴∠EAC=2x.
∵∠AFE=∠DFC=90°-x,
∴∠AEF=180°-∠EAF-∠AFE=180°-2x-(90°-x)=90°-x,
∴∠AEF=∠AFE,
∴AE=AF,
∴AB=AE.

(2)AG=MD1
证明:作EN⊥AC于N,取EC中点O,
连接AD1、NM、MC、MO、NO、EB、EC,如图2.
∵AE平分∠PAC,EN⊥AC,EG⊥AP,
∴EG=EN,∠EGA=∠ENA=90°.
∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,
∴四边形EGAN是矩形.
∵EG=EN,∴矩形EGAN是正方形,
∴AG=AN,∠EAN=45°,∠GEN=90°.
∵ED垂直平分BC,∴EB=EC.
在Rt△BEG和Rt△CEN中,
EB=EC
EG=EN

∴Rt△BEG≌Rt△CEN(HL),
∴∠GBE=∠NCE,∠GEB=∠NEC,
∴∠GEN=∠BEC=90°
∵EB=EC,
∴∠ECB=∠EBC=45°.
∵∠BAC=90°,∠ABC=2∠ACB,
∴∠ABC=60°,∠ACB=30°,
∴∠ABE=∠ACE=15°.
∵∠BAC=90°,点D为BC中点,
∴AD=CD,
∴∠DAC=∠DCA=30°.
∵点D与点D1关于AC对称,
∴∠D1AC=∠DAC=30°,
∴∠MAD1=45°-30°=15°.
∵DA=DC,DM⊥AC,
∴DM垂直平分AC,
∴MA=MC,
∴∠CMH=∠AMH=90°-45°=45°,
∴∠AMC=90°,
∴∠ENC=∠AMC=90°.
∵点O为EC中点,
∴ON=OM=OE=OC=
1
2
EC,
∴E、N、C、M四点共圆,
∴∠EMN=∠ECN=15°,
∴∠MAD1=∠EMN=15°,
在△AMN和△MAD1中,
∠MAD1=∠AMN
AM=MA
∠AMD1=∠MAN=45°

∴△AMN≌△MAD1
∴AN=MD1
∴AG=MD1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
手机用户52671
2015-01-01 · 超过56用户采纳过TA的回答
知道答主
回答量:117
采纳率:100%
帮助的人:102万
展开全部
(1)证明:连接BF,如图1.
设∠ACB=x,则∠ABC=3x,
∵FD垂直平分BC,
∴FB=FC,
∴∠FBC=∠FCB=x,
∴∠ABF=∠AFB=2x,
∴AB=AF,∠PAC=4x.
∵AE平分∠PAC,
∴∠EAC=2x.
∵∠AFE=∠DFC=90°-x,
∴∠AEF=180°-∠EAF-∠AFE=180°-2x-(90°-x)=90°-x,
∴∠AEF=∠AFE,
∴AE=AF,
∴AB=AE.

(2)AG=MD1
证明:作EN⊥AC于N,取EC中点O,
连接AD1、NM、MC、MO、NO、EB、EC,如图2.
∵AE平分∠PAC,EN⊥AC,EG⊥AP,
∴EG=EN,∠EGA=∠ENA=90°.
∵∠BAC=90°,∴∠EGA=∠ENA=∠BAC=90°,
∴四边形EGAN是矩形.
∵EG=EN,∴矩形EGAN是正方形,
∴AG=AN,∠EAN=45°,∠GEN=90°.
∵ED垂直平分BC,∴EB=EC.
在Rt△BEG和Rt△CEN中,
EB=EC
EG=EN

∴Rt△BEG≌Rt△CEN(HL),
∴∠GBE=∠NCE,∠GEB=∠NEC,
∴∠GEN=∠BEC=90°
∵EB=EC,
∴∠ECB=∠EBC=45°.
∵∠BAC=90°,∠ABC=2∠ACB,
∴∠ABC=60°,∠ACB=30°,
∴∠ABE=∠ACE=15°.
∵∠BAC=90°,点D为BC中点,
∴AD=CD,
∴∠DAC=∠DCA=30°.
∵点D与点D1关于AC对称,
∴∠D1AC=∠DAC=30°,
∴∠MAD1=45°-30°=15°.
∵DA=DC,DM⊥AC,
∴DM垂直平分AC,
∴MA=MC,
∴∠CMH=∠AMH=90°-45°=45°,
∴∠AMC=90°,
∴∠ENC=∠AMC=90°.
∵点O为EC中点,
∴ON=OM=OE=OC=
1
2
EC,
∴E、N、C、M四点共圆,
∴∠EMN=∠ECN=15°,
∴∠MAD1=∠EMN=15°,
在△AMN和△MAD1中,
∠MAD1=∠AMN
AM=MA
∠AMD1=∠MAN=45°

∴△AMN≌△MAD1
∴AN=MD1
∴AG=MD1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式