计算三重积分∫∫∫z^2dv,其中是两个球x^2+y^2+z^2<=1和x^2+y^2+z^2<=2z所围成的区域!!!!!急急急急

 我来答
牛牛爱教育
高粉答主

2020-05-28 · 我是教育小达人,乐于助人; 专注于分享科
牛牛爱教育
采纳数:900 获赞数:105794

向TA提问 私信TA
展开全部

解答过程如下:

标准球坐标
x²+y²+(z-a)² = a²

x²+y²+z² = 2az

x = r sinφ cosθ

y = r sinφ sinθ

z = r cosφ

dV = r²sinφ drdφdθ

Ω方程变为:r = 2acosφ

由于整个球面在xOy面上,所以0 ≤ φ ≤ π/2

∫_(Ω) (x²+y²+z²) dV

= ∫(0,2π) dθ ∫(0,π/2) sinφ dφ ∫(0,2acosφ) r² * r² dr

= (2π)∫(0,π/2) sinφ * (1/5)(32a⁵cos⁵φ) dφ

= (2π)(1/5)(32a⁵)(- 1)∫(0,π/2) cos⁵φ d(cosφ)

= (2π)(1/5)(32a⁵)(- 1)(1/6)[ cos⁶φ ]|(0,π/2)

= (2π)(1/5)(32a⁵)(- 1)(1/6)(0 - 1)

= 32πa⁵/15

扩展资料

求三重积分的方法:

设三元函数f(x,y,z)在区域Ω上具有一阶5261连续偏导数,将Ω任意分割为n个小区域,每个小区域的直径记为4102r?(i=1,2,...,n),体积记为Δ1653δ?,||T||=max{r?},在每个小区域内取点f(ξ?,η回?,ζ?),作和式Σf(ξ?,η?,ζ?)Δδ?。

若该和式当||T||→0时的极限存在且唯一答(即与Ω的分割和点的选取无关),则称该极限为函数f(x,y,z)在区域Ω上的三重积分,记为∫∫∫f(x,y,z)dV,其中dV=dxdydz。

设三元函数z=f(x,y,z)定义在有界闭区域Ω上将区域Ω任意分成n个子域Δvi(i=123…,n)并以Δvi表示第i个子域的体积.在Δvi上任取一点。

公式:

茹翊神谕者

2021-09-06 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1606万
展开全部

令R=1即可,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式