
3*[1*2+2*3+3*4+...n*(n+1)]=
4个回答
展开全部
3*[1*2+2*3+3*4+...n*(n+1)]
根据中括号内的通项公式得
=3*[1(1+1)+2(2+1)+3(3+1)+···+n(n+1)]
=3*[1²+1+2²+2+3²+3+····+n²+n]
移项得
=3*[(1+2+3+····+n)+(1²+2²+3²+···n²)]
由数列求和公式得
=3*[(1+n)n/2+n(n+1)(2n+1)/6]
=3*[n(n+1)/2[1+(2n+1)/3]
=3*[n(n+1)(n+2)/3]
=n(n+1)(n+2)
注:此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
根据中括号内的通项公式得
=3*[1(1+1)+2(2+1)+3(3+1)+···+n(n+1)]
=3*[1²+1+2²+2+3²+3+····+n²+n]
移项得
=3*[(1+2+3+····+n)+(1²+2²+3²+···n²)]
由数列求和公式得
=3*[(1+n)n/2+n(n+1)(2n+1)/6]
=3*[n(n+1)/2[1+(2n+1)/3]
=3*[n(n+1)(n+2)/3]
=n(n+1)(n+2)
注:此题应用的两个常用的求和公式为:
1+2+3+···+n=(1+n)n/2
1²+2²+3²+···n²=n(n+1)(2n+1)/6
展开全部
解3*[1*2+2*3+3*4+...n*(n+1)]
=3*[1*(1+1)+2*(2+1)+3*(3+1)+...n*(n+1)]
=3*[(1^2+1)+(2^2+2)+(3^2+2)+...+(n^2+n)]
=3*[(1^2+2^2+3^2+n^2)+(1+2+3+....+n)]
=3*[n(n+1)(2n+1)/6+n(n+1)/2]
=3n(n+1)[(2n+1)/6+1/2]
=3n(n+1)(2n+4)/6
=n(n+1)(n+2)
=3*[1*(1+1)+2*(2+1)+3*(3+1)+...n*(n+1)]
=3*[(1^2+1)+(2^2+2)+(3^2+2)+...+(n^2+n)]
=3*[(1^2+2^2+3^2+n^2)+(1+2+3+....+n)]
=3*[n(n+1)(2n+1)/6+n(n+1)/2]
=3n(n+1)[(2n+1)/6+1/2]
=3n(n+1)(2n+4)/6
=n(n+1)(n+2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:原式=3*∑(k^2+k)=3(∑k^2+∑k)(k=1,2,……,n)=3*[n(n+1)(2n+1)/6+n(n+1)/2)]=n(n+1)(n+2)。供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询