多元函数在某点处的连续性如何证明
6个回答
展开全部
方法一:通过夹逼定理,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等。
方法二:判断多元函数在该点的极限和函数值是不是相等就可以。
扩展资料:
多元函数的定义为:
设D为一个非空的n 元有序数组的集合, f为某一确定的对应规则。若对于每一个有序数组 ( x1,x2,…,xn)∈D,通过对应规则f,都有唯一确定的实数y与之对应,则称对应规则f为定义在D上的n元函数。
记为y=f(x1,x2,…,xn) 其中 ( x1,x2,…,xn)∈D。 变量x1,x2,…,xn称为自变量,y称为因变量。
当n=1时,为一元函数,记为y=f(x),x∈D;
当n=2时,为二元函数,记为z=f(x,y),(x,y)∈D。二元及以上的函数统称为多元函数。
参考资料:
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
没有专门的一个公式或定理,但是我可以总结几个方法给你看看.
如果一个多元函数是连续的,那么一般的做法是这样:通过夹逼法,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等.而一般的,这种题目往往是探求在(0,0)这一点的连续性,而又往往左边h(x)是0,右边g(x)也是趋于零的.而g(x)趋于零通常又是运用基本不等式对它进行放缩最后求得极限.
如果一个多元函数是不连续的,这种最开心了,为什么这么说呢,一般的你可以先设定变量间的关系,比如y = kx,y = kx^2等等,最后发现极限与k相关,k取不同的值极限也取不同的值,所以极限是不存在的.
如果一个多元函数是连续的,那么一般的做法是这样:通过夹逼法,h(x)<f(x)<g(x),而h(x)与 g(x)的极限又是相等的,然后通过对比f(x)在某一点的函数值,最后得出结论是否相等.而一般的,这种题目往往是探求在(0,0)这一点的连续性,而又往往左边h(x)是0,右边g(x)也是趋于零的.而g(x)趋于零通常又是运用基本不等式对它进行放缩最后求得极限.
如果一个多元函数是不连续的,这种最开心了,为什么这么说呢,一般的你可以先设定变量间的关系,比如y = kx,y = kx^2等等,最后发现极限与k相关,k取不同的值极限也取不同的值,所以极限是不存在的.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明该点的极限值等于函数值。
追问
多元函数求极限一直不太懂╮(╯▽╰)╭
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用定义证明。
或者,例如,可微则连续。
或者,例如,可微则连续。
追问
哦,还有吗?
追答
在学习的过程中积累吧。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询