1²+2²+3²+……+n²
1个回答
展开全部
原式=1*2-1+2*3-2+3*4-3……+n(n+1)-n
=[1*2+2*3+3*4+……+n(n+1)]-(1+2+3+……+n)
=1/3(1*2*3-0*1*2)+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+……1/3[n*(n+1)(n+2)-(n-1)n(n+1)]-(1+2+3+……+n)
=1/3[n(n+1)(n+2)]-[(n+1)n]/2
=[n(n+1)(2n+1)]/6
=[1*2+2*3+3*4+……+n(n+1)]-(1+2+3+……+n)
=1/3(1*2*3-0*1*2)+1/3(2*3*4-1*2*3)+1/3(3*4*5-2*3*4)+……1/3[n*(n+1)(n+2)-(n-1)n(n+1)]-(1+2+3+……+n)
=1/3[n(n+1)(n+2)]-[(n+1)n]/2
=[n(n+1)(2n+1)]/6
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询