△的公式与求根公式是什么?
7个回答
展开全部
-b±√b²-4ac/2a一元二次方程的表达式是 ax²+bx+c=0(a,b,c都是常数)当b²-4ac>0时,有两个不相等的实数根。这时可以使用上述求根公式求根。当b²-4ac=0时,有两个相等的实数根。这时可以使用上述求根公式求根。当b²-4ac<0是,没有实数根。
扩展资料:
对于方程:ax2+bx+c=0:b2-4ac叫做根的判别式
1、求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。注意:当△≥0时,方程有实数根。
2、若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。
3、以a和b为根的一元二次方程是x2-(a+b)x+ab=0。
展开全部
对于方程:ax2+bx+c=0:b2-4ac叫做根的判别式.①求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2). ③以a和b为根的一元二次方程是x2-(a+b)x+ab=0.
一元二次方程的求根公式是-b±√b²-4ac/2a一元二次方程的表达式是 ax²+bx+c=0(a,b,c都是常数)当b²-4ac>0时,有两个不相等的实数根。这时可以使用上述求根公式求根。当b²-4ac=0时,有两个相等的实数根。这时可以使用上述求根公式求根。当b²-4ac<0是,没有实数根。
一元二次方程的求根公式是-b±√b²-4ac/2a一元二次方程的表达式是 ax²+bx+c=0(a,b,c都是常数)当b²-4ac>0时,有两个不相等的实数根。这时可以使用上述求根公式求根。当b²-4ac=0时,有两个相等的实数根。这时可以使用上述求根公式求根。当b²-4ac<0是,没有实数根。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1、求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。注意:当△≥0时,方程有实数根。-b±√b²-4ac/2a一元二次方程的表达式是 ax²+bx+c=0(a,b,c都是常数)
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
△的公式与求根公式推导是-b±√b²-4ac/2a,一元二次方程的表达式是ax²+bx+c=0(a,b,c都是常数)当b²-4ac>0时,有两个不相等的实数根。当b²-4ac=0时,有两个相等的实数根。
这时可以使用上述求根公式求根。当b²-4ac<0,没有实数根。 对于方程:ax2+bx+c=0:b2-4ac叫做根的判别式。1、求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。
注意:当△≥0时,方程有实数根。2、若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 3、以a和b为根的一元二次方程是x2-(a+b)x+ab=0。
这时可以使用上述求根公式求根。当b²-4ac<0,没有实数根。 对于方程:ax2+bx+c=0:b2-4ac叫做根的判别式。1、求根公式是x当△>0时,方程有两个不相等的实数根; 当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根。
注意:当△≥0时,方程有实数根。2、若方程有两个实数根x1和x2,并且二次三项式ax2+bx+c可分解为a(x-x1)(x-x2)。 3、以a和b为根的一元二次方程是x2-(a+b)x+ab=0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
Δ的公式为:Δ=b²-4ac。
一元二次方程的判别式我们通常du用希腊字母Δ(读作“德塔”)来表示。
一元二次方程ax²+bx+c=0(a≠0)的根有三种情况:有两个相等的实数根、有两个不相等的实数根、没有实数根。因为一元二次方程的根与系数之间存在特殊的关系,我们不需要解方程,也能对根的情况做出判别。
一元二次方程的一般形式为ax²+bx+c=0(a≠0)
那么Δ=b²-4ac。
若Δ>0,则此一元二次方程有两个不相等的实数根;
若Δ=0,则此一元二次方程有两个相等的实数根;
若Δ<0,则此一元二次方程没有实数根。
在一元二次方程 (a≠0,a、b、c∈R)中,
1、当方程有两个不相等的实数根时,△>0;
2、当方程有两个相等的实数根时,△=0;
当方程没有实数根时,△<0。
(1)和(2)合起来:当方程有实数根时,△≥0.
一元二次方程的判别式我们通常du用希腊字母Δ(读作“德塔”)来表示。
一元二次方程ax²+bx+c=0(a≠0)的根有三种情况:有两个相等的实数根、有两个不相等的实数根、没有实数根。因为一元二次方程的根与系数之间存在特殊的关系,我们不需要解方程,也能对根的情况做出判别。
一元二次方程的一般形式为ax²+bx+c=0(a≠0)
那么Δ=b²-4ac。
若Δ>0,则此一元二次方程有两个不相等的实数根;
若Δ=0,则此一元二次方程有两个相等的实数根;
若Δ<0,则此一元二次方程没有实数根。
在一元二次方程 (a≠0,a、b、c∈R)中,
1、当方程有两个不相等的实数根时,△>0;
2、当方程有两个相等的实数根时,△=0;
当方程没有实数根时,△<0。
(1)和(2)合起来:当方程有实数根时,△≥0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询