2个回答
展开全部
特征方程
2r^2+5r=0
r=0,r=-5/2
所以齐次通解为y=C1+C2e^(-5/2)
设特解是y=ax^4+bx^3+cx^2+dx+e
y'=4ax^3+3bx^2+2cx+d
y''=12ax^2+6bx+2c
代入原方程得
2(12ax^2+6bx+2c)+5(4ax^3+3bx^2+2cx+d)=5x^2-2x-1
整理得
20ax^3+(24a+15b)x^2+(12b+10c)x+4c+5d=5x^2-2x-1
比较系数得
20a=0
24a+15b=5
12b+10c=-2
4c+5d=-1
解得a=0,b=1/3,c=-3/5,d=7/25,e=C
因此特解是y=1/3x^3-3/5x^2+7/25x+C
所以通解为
y=C1+C2e^(-5/2)+1/3x^3-3/5x^2+7/25x+C
2r^2+5r=0
r=0,r=-5/2
所以齐次通解为y=C1+C2e^(-5/2)
设特解是y=ax^4+bx^3+cx^2+dx+e
y'=4ax^3+3bx^2+2cx+d
y''=12ax^2+6bx+2c
代入原方程得
2(12ax^2+6bx+2c)+5(4ax^3+3bx^2+2cx+d)=5x^2-2x-1
整理得
20ax^3+(24a+15b)x^2+(12b+10c)x+4c+5d=5x^2-2x-1
比较系数得
20a=0
24a+15b=5
12b+10c=-2
4c+5d=-1
解得a=0,b=1/3,c=-3/5,d=7/25,e=C
因此特解是y=1/3x^3-3/5x^2+7/25x+C
所以通解为
y=C1+C2e^(-5/2)+1/3x^3-3/5x^2+7/25x+C
富港检测技术(东莞)有限公司_
2024-04-02 广告
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发...
点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询