1个回答
展开全部
为什么出错,原因是分母是x^4, 分子一定要展开到x^4才行
x->0
cosx ~ 1 - (1/2)x^2 + (1/24)x^4
//
x->0
sinx ~ x -(1/6)x^3
sin4x ~ 4x - (32/3)x^3
2x - (1/2)sin4x ~ (16/3)x^3
/
lim(x->0) [1/(sinx)^2 - (cosx)^2 /x^2]
=lim(x->0) [ x^2 - (sinx)^2.(cosx)^2]/[x^2.(sinx)^2]
=lim(x->0) [ x^2 - (1/4)(sin2x)^2]/x^4 (0/0)
分子,分母分别求导
=lim(x->0) [ 2x - sin2x.cos2x ]/(4x^3)
=lim(x->0) [ 2x - (1/2)sin4x ]/(4x^3)
=lim(x->0) [ (16/3)x^3 ]/(4x^3)
=4/3
x->0
cosx ~ 1 - (1/2)x^2 + (1/24)x^4
//
x->0
sinx ~ x -(1/6)x^3
sin4x ~ 4x - (32/3)x^3
2x - (1/2)sin4x ~ (16/3)x^3
/
lim(x->0) [1/(sinx)^2 - (cosx)^2 /x^2]
=lim(x->0) [ x^2 - (sinx)^2.(cosx)^2]/[x^2.(sinx)^2]
=lim(x->0) [ x^2 - (1/4)(sin2x)^2]/x^4 (0/0)
分子,分母分别求导
=lim(x->0) [ 2x - sin2x.cos2x ]/(4x^3)
=lim(x->0) [ 2x - (1/2)sin4x ]/(4x^3)
=lim(x->0) [ (16/3)x^3 ]/(4x^3)
=4/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询