已知向量a=(cosx,sinx),向量b(-cosx,cosx),向量c(-1,0)(1)若x=π/6,求向量a与向量c的夹角
展开全部
(1)若x=π/6,a=(√3/2,1/2),c=(-1,0)
cos<a,c>=(a●c)/|a||c|=(-√3/2)/(1*1)=-√3/2
∵<a,c>∈[0,π]
∴向量a,c的夹角为π/3
(2)
f(x)=2a*b+1=-cos²x+sinxcosx+1
=1/2*sin2x-1/2(1+cos2x)+1
=1/2sin2x-1/2*cos2x+1/2
=√2/2sin(2x-π/4)+1/2
∵x∈[π/2,9π/8]∴2x-π/4∈[3π/4,2π]
∴2x-π/4=3π/4时,f(x)取得最大值1
cos<a,c>=(a●c)/|a||c|=(-√3/2)/(1*1)=-√3/2
∵<a,c>∈[0,π]
∴向量a,c的夹角为π/3
(2)
f(x)=2a*b+1=-cos²x+sinxcosx+1
=1/2*sin2x-1/2(1+cos2x)+1
=1/2sin2x-1/2*cos2x+1/2
=√2/2sin(2x-π/4)+1/2
∵x∈[π/2,9π/8]∴2x-π/4∈[3π/4,2π]
∴2x-π/4=3π/4时,f(x)取得最大值1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
向量a=(cosx,sinx),向量b(-cosx,cosx),向量c(-1,0)
(1)
x=π/6
a=(√3/2,1/2)
|a|=1
|c|=1
cos<a,c>=a*c/(|a|*|c)=-√3/2
所以
<a,c>=150°
(2)
x∈[π/2,9π/8]
f(x)=2ab+1
=2(cosx,sinx)(-cosx,cosx)+1
=2(-cos²x+sinxcosx)+1
=-2cos²x+2sinxcosx+1
=-cos2x+sin2x
=√2sin(2x-π/4)
因为
x∈[π/2,9π/8]
所以
2x-π/4∈[3π/4,2π]
得
sin(2x-π/4)∈[-1,√2/2]
则
f(x)∈[-√2,1]
则
最大值为1
(1)
x=π/6
a=(√3/2,1/2)
|a|=1
|c|=1
cos<a,c>=a*c/(|a|*|c)=-√3/2
所以
<a,c>=150°
(2)
x∈[π/2,9π/8]
f(x)=2ab+1
=2(cosx,sinx)(-cosx,cosx)+1
=2(-cos²x+sinxcosx)+1
=-2cos²x+2sinxcosx+1
=-cos2x+sin2x
=√2sin(2x-π/4)
因为
x∈[π/2,9π/8]
所以
2x-π/4∈[3π/4,2π]
得
sin(2x-π/4)∈[-1,√2/2]
则
f(x)∈[-√2,1]
则
最大值为1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询