为什么齐次线性方程组的的系数行列式等于零就有非零解

 我来答
阿肆聊生活
高粉答主

2021-09-26 · 每个回答都超有意思的
知道大有可为答主
回答量:1.1万
采纳率:100%
帮助的人:182万
展开全部

这个系数行列式必然行数和列数是想等的,如果这个行列式的值是0那么行列式在行的初等变换中 必然可以出现一行全部都是0的状态。

这样一来也就是说,以前的方程组里面相互可以消掉某个方程,这个时候就出现了未知数数量大于方程数量,更多的未知数需要满足的方程数比较少所以,可取的值就会更多也就有非零解了。

常数项全部为零的线性方程组。如果m<n(行数小于列数,即未知数的数量大于所给方程组数),则齐次线性方程组有非零解,否则为全零解。

性质

1.齐次线性方程组的两个解的和仍是齐次线性方程组的一组解。

2.齐次线性方程组的解的k倍仍然是齐次线性方程组的解。

3.齐次线性方程组的系数矩阵秩r(A)=n,方程组有唯一零解。

齐次线性方程组的系数矩阵秩r(A)<n,方程组有无数多解。

4. n元齐次线性方程组有非零解的充要条件是其系数行列式为零。等价地,方程组有唯一的零解的充要条件是系数矩阵不为零。

逢玉枝牵戌
2020-05-02 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:26%
帮助的人:2327万
展开全部
理解后这个性质其实不用证明的。齐次方程组是线性方程组的特殊形式,故关于线性方程组的性质齐次方程组也适用。n个方程n个未知量的线性方程组有唯一解的充要条件是其系数行列式不等于0,这是线性代数中最重要的结论之一,证明教材上都有。注意当线性方程组的系数行列式等于0时,该线性方程组可能无解也可能有无数解,而由于齐次方程组必有零解,故系数行列式等于0时齐次方程组不可能无解,所以有无数组解,也就是有非零解。如果齐次方程组的系数行列式不等于0,那么它有唯一解,又因其必有零解,故这时齐次方程组只有零解。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
甄荣花载绫
2020-02-26 · TA获得超过3.6万个赞
知道大有可为答主
回答量:1.2万
采纳率:27%
帮助的人:671万
展开全部
首先,齐次线性方程组,肯定有零解。
如果系数矩阵行列式不等于0,则
系数矩阵可逆,Ax=0,等式左右同时左乘A逆,得到x=0,
即只有零解。
否则(即系数矩阵行列式等于0时),有其他解(即非零解)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式