n级行列式的几何意义
N阶行列式的几何意义的证明.我知道N阶行列式的几何意义是对应的N阶矩阵所对应的向量组按照平行四边形法则组合成的超空间立方体的体积。请问这个结论是如何证明的?以及,这个结论...
N阶行列式的几何意义的证明.
我知道N阶行列式的几何意义是对应的N阶矩阵所对应的向量组按照平行四边形法则组合成的超空间立方体的体积。请问这个结论是如何证明的?以及,这个结论的证明是否论证了定义MxN阶矩阵的行列式是无意义的?
PS:最好不要过多涉及矩阵论的内容, 展开
我知道N阶行列式的几何意义是对应的N阶矩阵所对应的向量组按照平行四边形法则组合成的超空间立方体的体积。请问这个结论是如何证明的?以及,这个结论的证明是否论证了定义MxN阶矩阵的行列式是无意义的?
PS:最好不要过多涉及矩阵论的内容, 展开
1个回答
展开全部
看这两个多线性函数:
行列式det(v1,v2,...,vn)
体积 vol(v1,v2,...,vn)
v1,v2,...,vn 都是R^n中的向量.
对于体积函数,规定当这n个向量按右手定则排列时,值为正,否则为负.
就是说 vol( v1,v2,...) = - vol( v2,v1,...)
那么这两个函数都是反对称、多线性的.
再注意到它们在任意一组单位正交基上的值都是1,
容易证明这三个属性唯一的确定这函数.就是说,归一化的反对称多线性函数是唯一确定的.所以 det = vol.
行列式det(v1,v2,...,vn)
体积 vol(v1,v2,...,vn)
v1,v2,...,vn 都是R^n中的向量.
对于体积函数,规定当这n个向量按右手定则排列时,值为正,否则为负.
就是说 vol( v1,v2,...) = - vol( v2,v1,...)
那么这两个函数都是反对称、多线性的.
再注意到它们在任意一组单位正交基上的值都是1,
容易证明这三个属性唯一的确定这函数.就是说,归一化的反对称多线性函数是唯一确定的.所以 det = vol.
厦门鲎试剂生物科技股份有限公司
2023-08-01 广告
2023-08-01 广告
BG试验又称为G试验,是一种基于真菌细胞壁成分的血清学试验。BG试验检测的是真菌细胞壁中的葡聚糖成分。操作步骤如下:1. 左键单击【View】2. 左键单击【Residual Diagnostics】3. 左键单击【Series Corre...
点击进入详情页
本回答由厦门鲎试剂生物科技股份有限公司提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询