函数f(x)=1/x的单调性与单调区间是什么?
1个回答
展开全部
指出函数f(x)=1/x的单调性与单调区间
解:显然函数f(x)=1/x的定义域为x≠0
1)当x>0时:
令x2>x1>0
f(x2)-f(x1)=1/x2-1/x1=(x1-x2)/(x1x2)
显然x1-x2<0,x1x2>0
则f(x2)-f(x1)<0
则当x>0时,函数f(x)=1/x单调递减;
2)当x<0时,
令0>x2>x1
f(x2)-f(x1)=
(x1-x2)/(x1x2)<0
则当x<0时,函数f(x)=1/x单调递减
综上可知,函数在定义域内因为有间断点x≠0
存在,所以在定义域内不单调;
其单调区间为:(0,+
∞)和(-∞,0)均是单调递减。
如果你认可我的答案,请点击下面的‘选为满意回答’按钮,谢谢!
解:显然函数f(x)=1/x的定义域为x≠0
1)当x>0时:
令x2>x1>0
f(x2)-f(x1)=1/x2-1/x1=(x1-x2)/(x1x2)
显然x1-x2<0,x1x2>0
则f(x2)-f(x1)<0
则当x>0时,函数f(x)=1/x单调递减;
2)当x<0时,
令0>x2>x1
f(x2)-f(x1)=
(x1-x2)/(x1x2)<0
则当x<0时,函数f(x)=1/x单调递减
综上可知,函数在定义域内因为有间断点x≠0
存在,所以在定义域内不单调;
其单调区间为:(0,+
∞)和(-∞,0)均是单调递减。
如果你认可我的答案,请点击下面的‘选为满意回答’按钮,谢谢!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |